Review of High RF Power Amplifier for 5G Applications
Abstract
One of the most important circuits in any wireless communications transmitter is the power amplifier. The 5G base station requires power amplifiers with high output powers, excellent efficiency, and high-power gain. A review of 5G sub-6 GHz base station power amplifier is offered in this paper. This study examined reviewed power amplifier high electron mobility transistor (HEMT) semiconductor technology based on gallium nitride (GaN). The researchers claim that the highest choice for offering high power in the output, high back-off power, and high efficiency is a gallium nitride (GaN HEMT)-based Power amplifier (PA). This study presented a review of class J power amplifier based on GaN HEMTs. Also, the evaluation of Doherty power amplifiers (DPAs) based on class J will be presented in this work.
References
- M. J. Ayoub, M. Alloush, A. Mohsen, A. Harb, N. Deltimple, and A. Serhane, Class ab vs. class j 5G power amplifier in 28-nm UTBB FD-SOI technology for high efficiency operation, in 2017 29th International Conference on Microelectronics (ICM), IEEE, 2017, pp. 14, doi: 10.1109/ICM.2017.8268876.
- R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, Inter-channel nonlinear interference noise in WDM systems: modeling and mitigation, Journal of Lightwave Technology, vol. 33, no. 5, pp. 10441053, 2014. https://doi.org/10.1155/2018/6793814.
- Z. Tong, L. Gu, Z. Ye, K. Surakitbovorn, and J. Rivas-Davila, On the techniques to utilize SiC power devices in high-and very high-frequency power converters, IEEE Transactions on Power Electronics, vol. 34, no. 12, pp. 1218112192, 2019. doi:10.1109/TPEL.2019.2904591.
- K. H. Hamza and D. Nirmal, A review of GaN HEMT broadband power amplifiers, AEU-International Journal of Electronics and Communications, vol. 116, p. 153040, 2020, doi: https://doi.org/10.1016/j.aeue.2019.153040.
- C. Huang, S. He, and F. You, Design of broadband modified class-J Doherty power amplifier with specific second harmonic terminations, IEEE Access, vol. 6, pp. 25312540, 2017, doi: 10.1109/ACCESS.2017.2784094.
- F. Wang, A. H. Yang, D. F. Kimball, L. E. Larson, and P. M. Asbeck, Design of wide-bandwidth envelope-tracking power amplifiers for OFDM applications, IEEE Transactions on Microwave theory and techniques, vol. 53, no. 4, pp. 12441255, 2005, doi:10.1109/TMTT.2005.845716.
- D. Cox, Linear amplification with nonlinear components, IEEE transactions on Communications, vol. 22, no. 12, pp. 19421945, 1974, doi:10.1109/TCOM.1974.1092141.
- F. Wang et al., An improved power-added efficiency 19-dBm hybrid envelope elimination and restoration power amplifier for 802.11 g WLAN applications, IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 12, pp. 40864099, 2006, doi: 10.1109/TMTT.2006.885575.
- W. H. Doherty, A new high efficiency power amplifier for modulated waves, Proceedings of the Institute of radio engineers, vol. 24, no. 9, pp. 11631182, 1936, doi: 10.1109/JRPROC.1936.228468.
- C. Ramella, A. Piacibello, R. Quaglia, V. Camarchia, and M. Pirola, High efficiency power amplifiers for modern mobile communications: The load-modulation approach, Electronics, vol. 6, no. 4, p. 96, 2017, doi.org/10.3390/electronics6040096.
- A. Nasri et al., Broadband Class-J GaN Doherty Power Amplifier, Electronics, vol. 11, no. 4, p. 552, 2022, doi: https://doi.org/10.3390/electronics11040552.
- P. Reynaert and M. Steyaert, RF power amplifiers for mobile communications. Springer Science & Business Media, 2006,ISBN: 1-4020-5117-4.
- S. Z. Asif, "5G Mobile Communications Concepts and Technologies", CRC Press, 2018, doi: https://doi.org/10.1201/9780429466342
- X. H. Fang and K.-K. M. Cheng, Extension of high-efficiency range of Doherty amplifier by using complex combining load, IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 9, pp. 20382047, 2014, doi: 10.1109/TMTT.2014.2333713.
- M. zen, K. Andersson, and C. Fager, Symmetrical Doherty power amplifier with extended efficiency range, IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 4, pp. 12731284, 2016, doi: 10.1109/TMTT.2016.2529601.
- X.-H. Fang, H.-Y. Liu, and K.-K. M. Cheng, Extended efficiency range, equal-cell Doherty amplifier design using explicit circuit model, IEEE Microwave and Wireless Components Letters, vol. 27, no. 5, pp. 497499, 2017, doi: 10.1109/LMWC.2017.2690870.
- W. Shi, S. He, and N. Gideon, Extending highefficiency power range of symmetrical Doherty power amplifiers by taking advantage of peaking stage, IET Microwaves, Antennas & Propagation, vol. 11, no. 9, pp. 12961302, 2017, doi: https://doi.org/10.1049/iet-map.2017.0119.
- M. R. Hasin and J. Kitchen, Exploiting phase for extended efficiency range in symmetrical Doherty power amplifiers, IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 8, pp. 34553463, 2019, doi: 10.1109/TMTT.2019.2921366.
- X.-H. Fang, H.-Y. Liu, K.-K. M. Cheng, and S. Boumaiza, Two-way Doherty power amplifier efficiency enhancement by incorporating transistors nonlinear phase distortion, IEEE Microwave and Wireless Components Letters, vol. 28, no. 2, pp. 168170, 2018, doi: 10.1109/LMWC.2017.2783845.
- M. R. Hasin and J. Kitchen, Optimized load trajectory for finite peaking off-state impedance-based Doherty power amplifiers, IEEE Microwave and Wireless Components Letters, vol. 29, no. 7, pp. 486488, 2019, doi: 10.1109/LMWC.2019.2915998.
- Z. Cheng, G. Xiong, Y. Liu, T. Zhang, J. Tian, and Y. J. Guo, High-efficiency Doherty power amplifier with wide OPBO range for base station systems, IET Microwaves, Antennas & Propagation, vol. 13, no. 7, pp. 926929, 2019, doi.org/10.1049/iet-map.2018.5617.
- Z. Zhang, Z. Cheng, and G. Liu, A power amplifier with large high-efficiency range for 5G communication, Sensors, vol. 20, no. 19, p. 5581, 2020, doi: 10.3390/s20195581.
- A. M. Niknejad, S. Thyagarajan, E. Alon, Y. Wang, and C. Hull, A circuit designers guide to 5G mm-wave, in 2015 IEEE Custom Integrated Circuits Conference (CICC), IEEE, 2015, pp. 18, doi: 10.1109/CICC.2015.7338410.
- W. Yimin, C. Jiayi, and L. Jiawang, Design of Sub-6G 150W High Efficiency Doherty Power Amplifier, in 2021 International Applied Computational Electromagnetics Society (ACES-China) Symposium, IEEE, 2021, pp. 12, doi: 10.23919/ACES-China52398.2021.9581728.
- N. Sridhar, C. Senthilpari, R. Mardeni, W. H. Yong, and T. Nandhakumar, A low power, highly efficient, linear, enhanced wideband Class-J mode power amplifier for 5G applications, Scientific Reports, vol. 12, no. 1, p. 8101, 2022, doi: 10.1038/s41598-022-12235-z.
- M. Dong, A High Efficiency Class J RF Power Amplifier., Microwave Journal, vol. 58, no. 6, 2015, ISSN:0192-6225.
- B. Liu, M. Mao, C. C. Boon, P. Choi, D. Khanna, and E. A. Fitzgerald, A fully integrated class-J GaN MMIC power amplifier for 5-GHz WLAN 802.11 ax application, IEEE Microwave and Wireless Components Letters, vol. 28, no. 5, pp. 434436, 2018, doi: 10.1109/LMWC.2018.2811338.
- M. Sajedin et al., Energy efficient and wideband class-J Doherty power amplifier, in 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), IEEE, 2020, pp. 16, doi: 10.1109/CSNDSP49049.2020.9249642.
- T. Canning, P. J. Tasker, and S. C. Cripps, Continuous mode power amplifier design using harmonic clipping contours: Theory and practice, IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 1, pp. 100110, 2013, doi: 10.1109/TMTT.2013.2292675.
- S. Rezaei, L. Belostotski, F. M. Ghannouchi, and P. Aflaki, Integrated design of a Class-J power amplifier, IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 4, pp. 16391648, 2013, , doi: 10.1109/TMTT.2013.2247618
- J. Xia, X. Zhu, L. Zhang, J. Zhai, and Y. Sun, High-efficiency GaN Doherty power amplifier for 100-MHz LTE-advanced application based on modified load modulation network, IEEE transactions on microwave theory and techniques, vol. 61, no. 8, pp. 29112921, 2013, doi: 10.1109/TMTT.2013.2269052.
- J. Pang, S. He, C. Huang, Z. Dai, J. Peng, and F. You, A post-matching Doherty power amplifier employing low-order impedance inverters for broadband applications, IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 12, pp. 40614071, 2015, doi: 10.1109/TMTT.2015.2495201.
- J. Xia, M. Yang, Y. Guo, and A. Zhu, A broadband high-efficiency Doherty power amplifier with integrated compensating reactance, IEEE Transactions on Microwave Theory and Techniques,
- J. Xia, M. Yang, Y. Guo, and A. Zhu, A broadband high-efficiency Doherty power amplifier with integrated compensating reactance, IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 7, pp. 20142024, 2016, doi: 10.1109/TMTT.2016.2574861.
- M. Agiwal, A. Roy, and N. Saxena, Next generation 5G wireless networks: A comprehensive survey, IEEE Communications Surveys & Tutorials, vol. 18, no. 3, pp. 16171655, 2016, doi:10.1109/COMST.2016.2532458.
- G. Sun and R. H. Jansen, Broadband Doherty power amplifier via real frequency technique, IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 1, pp. 99111, 2011, doi: 10.1109/TMTT.2011.2175237.
- J. M. Rubio, J. Fang, V. Camarchia, R. Quaglia, M. Pirola, and G. Ghione, 33.6-GHz wideband GaN Doherty power amplifier exploiting output compensation stages, IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 8, pp. 25432548, 2012, doi: 10.1109/TMTT.2012.2201745.
- G. Naah, S. He, W. Shi, and C. Li, Symmetrical Doherty power amplifier design via continuous harmonic-tuned Class-J mode, AEU-International Journal of Electronics and Communications, vol. 106, pp. 96102, 2019, doi.org/10.1016/j.aeue.2019.05.008.
- G. Naah, S. He, W. Shi, C. Li, and S. Y. Nusenu, Harmonic-tuned continuum mode active load modulation output combiner for the design of broadband asymmetric Doherty power amplifiers, IET Microwaves, Antennas & Propagation, vol. 13, no. 8, pp. 12261234, 2019, doi.org/10.1049/iet-map.2018.5841.
- C. Yu, Z. Su, Y. Liu, B. Tang, and S. Li, Broadband filtering high-efficiency Doherty amplifier based on a novel post-matching network, in 2019 European Microwave Conference in Central Europe (EuMCE), IEEE, 2019, pp. 212215, ISBN:978-2-87487-067-5.
- A. Nasri et al., Design of a wideband Doherty power amplifier with high efficiency for 5G application, Electronics, vol. 10, no. 8, p. 873, 2021, doi.org/10.3390/electronics10080873.
- J. Kim, Analysis and design optimisation for inverse Class-F GaN Doherty amplifier, IET Microwaves, Antennas & Propagation, vol. 13, no. 4, pp. 448454, 2019, doi.org/10.1049/iet-map.2018.5124.
- M. Abdulhamid and J. Karugu, On the design of Class-J microwave power amplifier, International Review of Applied Sciences and Engineering, vol. 10, no. 3, pp. 225232, 2019.
- D. Y. Lie, J. C. Mayeda, Y. Li, and J. Lopez, A review of 5G power amplifier design at cm-wave and mm-wave frequencies, Wireless Communications
- J. A. Jayamon, J. F. Buckwalter, and P. M. Asbeck, 28 GHz> 250 mW CMOS power amplifier using multigate-cell design, in 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), IEEE, 2015, pp. 14, doi:10.1109/CSICS.2015.7314460.
- Y.-H. Chen, K.-Y. Kao, C.-Y. Chao, and K.-Y. Lin, A 24 GHz CMOS power amplifier with successive IM2 feed-forward IMD3 cancellation, in 2015 IEEE MTT-S International Microwave Symposium, IEEE, 2015, pp. 14, doi:10.1109/MWSYM.2015.7166914.
- K. Kunihiro, S. Hori, and T. Kaneko, High efficiency power amplifiers for mobile base stations: Recent trends and future prospects for 5G, IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences, vol. 101, no. 2, pp. 374384, 2018, doi: https://doi.org/10.1587/transfun.E101.A.374.
- C. Nadjahi, H. Louahlia, and S. Lemasson, A review of thermal management and innovative cooling strategies for data center, Sustainable Computing: Informatics and Systems, vol. 19, pp. 1428, 2018, doi: https://doi.org/10.1016/j.suscom.2018.05.002.
- and Mobile Computing, vol. 2018, 2018, https://doi.org/10.1155/2018/6793814