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ABSTRACT

In this paper a mathematical model is constructed to describe a two dimensional
flow for an inclined films with an inclination angle « to the horizontal that is drainage
under the action of gravity. An asymptotic analysis is employed with the use of
lubrication approximation. The film is assumed to be supported by wire frame elements
at the ends. We apply the Navier—Stokes equations for flow of an incompressible fluid
in two dimensions with specified boundary conditions. We obtain the equations
representing the film thickness, the surface concentration, and the surface velocity. We
obtain the similarity solutions for extensional flow of the simplified forms of these
equations by using Lagrangian coordinate and then we approximate this equation by
using Taylor series to obtain another similarity equation that can be used for different
values of time.

Keywords: Flow of films, Navier — Stokes equations, incompressible fluid,
boundary conditions.

Al ) Ao O sibal) ief ola
aY) e il Cijs
a0 dnals cdpjill LS
2010/04/12 :J s s 2009/09/13 :25uN) Gl

gaiddall
5o oload) Al 3) aaall LY AUkl 8 A0 s Y) Auhal zigal auag a3 Caadll 12 8
vie cufie eliall o Ll Gz 3sail) 138 Al 8 il Aol silaal dabaill axdia) L2l
st iy Glpall 13gd Jslall e Ulas . oliial) mdac Aoy Liadly 355 elial) dlaw Jidh e ales e
dalida andl lgaladind Sa c¥alas e Jgaall HhlE dludidiag i)Y clflan) aladiul SYalaall 028
Lol
Agagan Jagyd ¢ bleadd QB e adle ¢ (uSgin — il ¥ olee ApdeV) lys tdalidad) clall)
Introduction:

Thin films have been studied widely in many areas, such as surface coatings in
paint, varnish and silver layer on a compact disc. The drainage of thin film is important
in understanding foam fabrications for applications like making cushions and these
foam are not aqueous. There are a variety of phenomena one can observe such as
drainage, details of rapture [1] and these phenomena can help to characterize and
describe the physical processes that occur in our real world and such knowledge can be
used in surface coatings in paint, protective wax and foam development [2].
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The drainage of soap films has been studied by many authors. Mysel [7] gave a
comprehensive experimental description of soap films thinning. The theoretical and
numerical model for soap film drainage studied by Schwartz [8] which reproduce may
of the features of this process that have been observed in experiment. These features
include the shape of the film thickness profile when the film is taken to be vertical and
supported by wires, and the large differences in drainage time scales for low and high
surfactant. Myers [5, 6] investigated the driven of thin film flow when the surface
tension play an important role. Kondic, L.[3] studied the instabilities in gravity driven
flow of thin liquid films. The main purpose of this paper is to study the inclined
drainage flow in mobile and immobile films in which the surfactant forces play an
important role on the drainage of thin liquid films.

Figure (1). Schematic diagram for an inclined surface liquid film flow
Formulations and Governing Equations:

We consider an inclined two dimensional soap film supported at the ends by
guides. The liquid air interface is located at y =+h(x,t) where the film is symmetric
with respect to the central line y =0 as shown in figure (1) and we consider only the
half film h(x,t)z 0 and the model is characterized by a very small Reynolds number.
Let U(u,v) be the fluid velocity, where u and v represent the velocity components
in x and y directions respectively.

The continuity equation is given by

NN g (D)
oX oy
and the momentum equations in x and y directions are respectively given by:
ou ou _ou oP ou o : )
Pl —+U—+V — |=——+u| — +— |+pg sina -(2)
ot OX oy OX oX*° oy
and
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ov ov ov oP ov oV 3
Pl —+U—+V — |=——+u| — +— |—pg cosa -..(3)
oy ox* oy

Which hold within the fluid half layer 0<y <h(xt) and where P and u
represent density and viscosity of fluid, g is the gravity and t the time.

The boundary conditions to be imposed are as follows:
Since the film is symmetric, we have

at y=0,v=0 ..(4)
and
ou
aty=0,—=0 ...(5)
oy
Furthermore at the surface of the film, the kinematics condition is given by:
oh oh
—=V-U— ...(6)
ot OX

Also the shear stress and normal stress conditions on the free surface of the film
are respectively given by:

r(x.t)= (8_u+ﬁj +2 @(@_a_“] (D)
ay ox ) Moax\ay o

and

P —_p _2{@(@_@}@} ®)
ox\oy ox ) oy

Where P, is the pressure at the liquid side of the free surface. We have to note

2
here that since on <1 so we can neglect (@J :
OX OX

Now we subdivide the velocity component U of the flow field into a purely slug
flow contribution uy =u,(x,t) and a shear component ul(x, y,t) which satisfies the no-

slip condition at the free surface, thatisat y=h , u,(x,y,t)=0 and thus

u(x,y,t)=uq(x,t)+u,(x,y.t) ...(9)
Now (2.1) and (2.9) give

Uy oy v _ ...(10)
X ox oy

Since the Reynolds number is taken so small, the inertia term in the Navier Stokes
equation can be neglected in comparison with viscous forces per unit volume of the
fluid and so equations (2) are reduced to give

2
P_ 8u2 +8 +pgsina ...(11)
ox ax oy’
and
P _ 62\/2 — o g Cosa --(12)
ECHEE

By using equation (9), equations (7), (8) and (11), become respectively
r(xt) = P2 O, NV, AUy ..(13)
oy oX ox\oy ox ox
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pop_gy N X)) N ..(14)
xloy ox ) oy
and
2 2 2
@;}u au20+8u21+6u21 +pgsina ...(15)
OX oXx® OXx° oy

Scaling and dimensional analysis:

If L denotes the characteristic length scale and a typical scale for width is
h,=eL , e<<1, then the velocity scale is V, =e?v ,, where is V1 the sheer scale and
v, Is the extensional scale and the transverse velocity scale is\V =€V, and the pressure
scaleis P =V, /L .

We introduce the following non-dimensional variables as follows.

x"=x/L, y'=y/elL, h"=h/elL
us=u,N,, uy =u,/ev,, v'=v/eV, -.-(16)
P'=PL/wV,, P/=PL/wV,, T'=tLl/ewV,

We define the Bond number (B) and the capillary number Ca as

B=L"Pg/c and Ca=V,/c

where o : is the surface tension.

By using (16), equations (10), (12) and (15) become non-dimensional, dropping all
primes for dimensionless variables, we obtain.

Oy 20Uy OV ..(17)

—t+e +—=0
OX oXx oy

oP ,0v 0V B

—=c 5 + 5 —

oy oX*° oy ca
2 2 2

£:6u§+626u21+6u21+55ina -.-(19)

oX  OX ox° oy° ca

Furthermore, the boundary conditions (4), (5), (13) and (14) become

cosa ...(18)

ou
v=0 ,—*t=0aty=0 ...(20)
oy
T(X,t):[%+ﬂj+2@[@_%_€%] e,
oy OX ox \oy OXx OX
ps=_p_2€28h(aul+avj_zav .(22)
OX\ Ox 0OX oy

Lubrication model:
We expand each of the unknowns U,,V and P as a power series in € as follows:

U (X, y,t,€)= Uy, +€ Uy +...

v(X,y,t,e)=v, +e€> v, +... ...(23)
P(x,y,t,e)=P, +€* P +...

The continuity equation (17) gives:
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Ny , 2 (Gum +e2 N +---j+ No 2 N1, g
OX OX OX oy oy

or

ou, ov, AUy | OV,
-0+ =0 |+€ +—|+--=0
oX oy oX oy

By equating the powers of €, we get:

Qg No |_g ...(24)
ES ay
Integrating (24) with respect to y we have:
ou
Vo=——2y +C(X,t ...(25)
T o Y (x.1)
Since at y = 0,we havey =0, we get c(x,t)=0and equation (25) reduces to give:
au,
vV, =——0 ...(26)
0 o Ly
Also equation (18) reduces to give
2 2
%:a_uzo+a_ulzo+isina (27)
oX  OX oy® Ca
and
P _Suy 0uy g .(28)
ox  oX oy

and so on. Integrating both sides of equation (27) with respect to Yy and since each of
the functions p, and U, are functions of X and t only, we get

2
% ai_a_z_isn]a y+kl(xlt) (29)
oy ox ox° Ca

© — 0, we get k,(x,t)=0 and equation (29) reduces to give

2
Uy, _ aPO_au20 —Esina y ...(30)
oy ox ox° Ca
equation (30) can be integrated to give
oP, ou, B y?
U, = ——2_—sina |>—+k -..(31)
10 [8x x? Ca aj 7 tka(xt)

at y=h,u, =0 and so from (31), we get

2 2
k,(x ,t)=—(£—a——ismajh

ox ox° Ca 2

Thus equation (31) give

1( 0P, 07 u, B 2 2
u, == To_ U _B g, “h ..(32)

o 2[6x x° Ca aj(y )
Now from the boundary condition (29) and the expansion (23), we have
P, = 28V°+P ..(33)
oy

71



Joseph G. Abdulahad

Using (24) in (33), we get

P2 p
154
or
2
0P _ 50U, P ...(34)

OX ox*  ox
Substituting equation (34) into (30) and (32), we get respectively

2
au10 =(_3a ué) +@_EsinaJy (35)
oy OX ox Ca
and
1 ou, oP. B .
ug, == 32104 &5 ® ging |(y2-h? ..(36)
0 2[ ox? ox Ca ](y )

Which represent the shear velocity equation.
Also from (23), equation (19) gives

oP, oV, <B [ oP, v, 0¥,

———+—F——C0sa+€| ——+—+— |+-=0

oy oy Ca ox° oy

Which given

oP, _ 82\15 € B CoSq ..(37)
oy oy Ca

From (21), the shear stress condition, gives:

{aum + =2 Ouiyy +...]+[%+52%+...J+ 2%{[%+52 %4. J
&y e ax ax ax ay ay

—m”—e[ﬁum+52 au”+---} —rix =040+
2x ax

oy ...(38)
Comparing the similar terms of both sides of (38) in power of &, we obtain
r(x t)=| Ho Yo o[V, _dug ...(39)

oy oOX ox\ oy oX
Using equation (24), (26) and (35), equation (39) on the free surface y = h, gives
2
r(x,t)= 42 u20 +@—Esina h —4@%
OX ox Ca OX OX
or
r(x,t)=—4i(h%)+hapS —Ehsina ...(40)
OX | OX ox Ca

We have to noticed that the term Yo can be neglected since it is of order € and it is

ax 2
smaller than the term Up-

Evolution equation of the film thickness:

It is known that the conservation of mass in integral form is

oh op o

—=—"F=— " u(x,y,t)d ...(41
ot OX ax!; ( y ) y “h)

Where @ is the volumetric flow rate.
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From (19) and (23), equation (41), gives

oh__ o7 2 (42)
—=——(u, +u,, +&“u,, Jdy
ot ox ‘!..( 0 10 11)
Using equation (36), equation (42) after simplification becomes

2 13 3
h__o (uh)—= NP LN B Gng -.-(43)
ot OX 3 ox 3 Ca

equation (43) is the evolution equation of the film thickness in non-dimensional form.
In dimensional form equation (40) and (43) are respectively

o (,ou oP .
=—4 h—L |+ h—— pghsin --(44)
( ) ”ax ( OX j OX Y “
and
N _ =0y h - P9 haging ..(45)
ot oOx 3u  ox 3u
The pressure P, in dimensional variables is defined as
2 2

P =0k =0 d°h/ox

(2]

Where k1 is the surface curvature.

Surfactant effect:
A convection — diffusion evolution equation for an insoluble surfactant for a film of
small slop is given by:

2
T2 wr)y+p L ...(46)
ot OX OX
Where T'(x,t) is a local surfactant concentration and D is Fickian diffusion constant.
The simplest form for small change in surface tension is given by:
o(l)=0,~k (I -T,) (47)

where klis constant and the zero subscript refer to initial values of these quantities at

the start of motion.
The surface shear stress is given by:

r(x,t)=a— L ...(48)
OX OX
substituting (48) into equation (44), we get
3
42 (haij_ka—r—aohah pghsina ..(49)
8x OX OX ox°
Furthermore equation (45), gives
N__ 0 (un)-Z 2 pelh],pe 0 (h*)sine .(50)
ot OX 3u oX OX 3u X

we have to noticed that equations (46), (49) and (50) form a complete set.

Sample calculation:
Assume that L =1cm and h, must be less than L, we take h,=0.5. The density

of water p :1gm/cm3 and the surface tension o =72dyne/cm and it can be reduced
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because of the existence of the surfactant, we take the viscosity «=0.01 poises. The

input dimensionless parameters are formed from the physical values solution we take
B, =0.2725 and Ca =30000. Profiles exhibit a concave-out form since the extensional

flow that occurs before surface tension and surface tension gradient effects become
important.

The early time solution is determined primarily by the simplified evolution equation
(50) which gives the form

=)

ot ox o °

and the simplified form of force balance equation gives

Dh _oh y i ..(51)
Dt ot ot oX

and

i(h auoj:_Pg sina (52)
oX U OX 4u

Integrating equation (52) with respect to X, we get

ou, pgsina*¥
h==2=— jhdx -.-(53)

OX 4u
Combining equatlons (51) and (53), we get
. x(t)

bh__pgsina [hax .(54)
Dt 4u
Now we solve the problem by using Lagrangian-discription of motion and we consider
an initially uniform film h(x,0)=h,, 0<x <L,, Where the evolution equation is
determined by equations (51), (52) and (53).

Let ¢ be the initial position of a particle on the film that moves to position X at a later
time, that is

x=x(¢,t) and x(¢,0)=¢;

and so equation (54) reduces to gives

Dh pgsmagl() sina
iy jh x,(5,0))dx = Pg4ﬂ o[ ) —<] ..(59)

where ¢, (t) isa functlon that will be determined by the lower end boundary condition.
The derivative following the motion in the Lagrangian system is given by
oh -pgsina
A_TFIT% t) — ...(56)
a - ap Mla0=¢]
and following the motion, the mass conservation condition requires that
h= hoﬁ_g ...(57)
OX
Thus equations (56) and (57) gives
0 o pg sina
“in s h.[c (t ...(58)
8t( Oaxj o) =¢]
integrating equatlon (58), we get

oc t__pgsina t ~
&l_ » L[gl(t)dt gt} ..(59)

X
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sinceat t=0, Z—gzo , SO equation (59), gives
X

% pc=plt) ...(60)
OoX

. t
where A=220% ang (1) =1- Af g (t)dt
4u 5
equation (60) is a first order differential equation whose general solution is given by
c(x,1) :e“{—%:)e’“wc} ...(61)

since at x=0, ¢ =0 so from equation (61) we get c =¢(t)/At, and then equation (61)
gives

c(x1) = o)/ At (" —1)] ..(62)
Equation (57) and (62) gives
h(x,t)=hyg(t)e"" ...(63)

The solution of equation (63) is completed by specifying the boundary condition at the
lower end of the film and here we consider only the case of a freely moving film of
initial length L, and accordingly the suspended weight below a given material element

remains constant in time, this means that ¢, =L, and so equation (63), gives
h(x,t)=hy(1-ALgtJe"™ ...(64)
For drainage of a film on a frame with a fixed lower boundary as treated in this
problem, the no flow condition requires that U, (Lo,t ) =0 and the general expression
for the speed variation can be obtained from the profile equation:

0o (X ,t):_ﬂ%dn ...(65)
equation (64) and (65), gives

Atx
uo(x,t)=1_e [1 1dfj X

1_tar ) x ...(66)
At t fdt) t

It is necessary to note here that the condition u(L,,t)=0 provides a new formula for
the function f (t)=1-ALt which appears in equation (64) subject to the condition

f(t)—>1 as t -0, and a closed expression for f(t) can be found. From equation (66)
and the condition u,(L,,t)=0, we get

J‘mdt _ (E—Ljdt

f(t) t 1-eH
which gives
e‘t
f0= oo ..(67)
As f(t)—1 as t—0, and from (67), we have e° = AL, and so equation (67) becomes
ALt
f (t):ﬁ (68)

which is the formulation for f (t) under the lower end boundary condition and thus
equation (64) can be formulated by using equation (68) to give
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h(x,t)=hLoAt[e* —1) e ..(69)

Which is the required evolution for the thickness of the film.
Now we introduce the following non-dimensional variable:

4

h = hoh_y X = LO)(_I t = 3IL[L30

aohs

Now equation (69), gives

t_y hO =c LO

1
. 4 . 4
4 pYsina 3/1L0t, pYsina S‘uLSOt*LOX*

h_LopgSInaBﬂLotle 4 ohd 1] e 4u  ohy

4u O'hg
or
h™= c:Blt—(eCBlr —ﬂle"Bﬂ’* ...(70)
where C = 35|n2a
4e
or

B,= B, (the modified Bond number).
€

By dropping tildes, equation (70), gives
h(x,t) CBL o ..(71)

- eCBlt -1

equation (71) is the non-dimensional form of equation (69).
Some of the solution curves are shown in figures (2), and (3) for different values
of the inclination angle & and for different values of time.

t=3t=2 t=1

Figure (2): Draining film profile for t =0, t =2 tand t =3 inclination
angle a =30 and Bond number B=0.1 .
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Figure (3): Draining film profile for t =0.01 t and inclination angles
a =30°,60° and 90°.

Conclusion:

The film drainage reproduces different features that include the shape of the film
profile and also in the draining time with or without surfactant effects. The film drains
quickly when no surfactant exists and have a hollow ground appearance, but when the
surfactant with high concentration exists, the film quickly look into an immobile
interface with a parabolic shape that drains in slow manner and retains an appreciable
thickness for long time and the film shape will be concaved out if the time drainage
increases.
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