
 Raf. J. of Comp. &  Math’s. , Vol. 7, No. 2, 2010 
 

 

67 

Flow of Soap Films on Inclined Plane 

Joseph G. Abdulahad 

College of Education 

University of Duhok 

Received on: 13/9/2009                            Accepted on: 12/4/2010 

ABSTRACT 

In this paper a mathematical model is constructed to describe a two dimensional 

flow for an inclined films with an inclination angle   to the horizontal that is drainage 

under the action of gravity. An asymptotic analysis is employed with the use of 

lubrication approximation. The film is assumed to be supported by wire frame elements 

at the ends. We apply the Navier–Stokes equations for flow of an incompressible fluid 

in two dimensions with specified boundary conditions. We obtain the equations 

representing the film thickness, the surface concentration, and the surface velocity. We 

obtain the similarity solutions for extensional flow of the simplified forms of these 

equations by using Lagrangian coordinate and then we approximate this equation by 

using Taylor series to obtain another similarity equation that can be used for different 

values of time.  
Keywords: Flow of films, Navier – Stokes equations, incompressible fluid, 

boundary conditions. 
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 الملخص
الجرييياب وةييو   يتيير ر إ الثعيي   الثنييائ النظييا   فيي الاائليية  الأغشيييةهيي ا الث يي  ضيين وذييل راييو   ل  ا يية  فيي 

عنيي   الغشييام مث ييذ أبالجا بيييةا ا ييتا   الت للييا الا ييا   ورظرييية التايلييذ فيي  د ا يية هيي ا الناييو    ليي  افترذيينا 
 توكس للاائل الغلر قابا للارضغاط مل شروط   ودية معلنة وضين ال ويو   -رهايتيه وق  ضن ضط لق معادلات رافلر

له ا الجرياب وضن ضةريي   نا على ال لو ل رعة  طح الغشاما  و وأيضاعلى معادلات ضاثا  اك الغشام والتركلا 
ايلر لل ويو  علييى معيادلات ياسييد ا يتا امها للييين ماتل يية لاكيرار  ومتلللييلة ضيي  إ يي ا ياتهي   الاعييادلات وا يتا ا  

 للامدا  
  توكس ، مائل غلر قابا للارضغاط ، شروط   وديةا -جرياب الاغشية، معادلات رافلرالكلمات المفتاحية: 

Introduction:  

Thin films have been studied widely in many areas, such as surface coatings in 

paint, varnish and silver layer on a compact disc. The drainage of thin film is important 

in understanding foam fabrications for applications like making cushions and these 

foam are not aqueous. There are a variety of phenomena one can observe such as 

drainage, details of rapture [1] and these phenomena can help to characterize and 

describe the physical processes that occur in our real world and such knowledge can be 

used in surface coatings in paint, protective wax and foam development [2]. 
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The drainage of soap films has been studied by many authors. Mysel [7] gave a 

comprehensive experimental description of soap films thinning. The theoretical and 

numerical model for soap film drainage studied by Schwartz [8] which reproduce may 

of the features of this process that have been observed in experiment. These features 

include the shape of the film thickness profile when the film is taken to be vertical and 

supported by wires, and the large differences in drainage time scales for low and high 

surfactant. Myers [5, 6] investigated the driven of thin film flow when the surface 

tension play an important role. Kondic, L.[3] studied the instabilities in gravity driven 

flow of thin liquid films. The main purpose of this paper is to study the inclined 

drainage flow in mobile and immobile films in which the surfactant forces play an 

important role on the drainage of thin liquid films.  

 

 

       

 

 

 

 

 

 

 

 

 

Figure (1). Schematic diagram for an inclined surface liquid film flow 

Formulations and Governing Equations:  

We consider an inclined two dimensional soap film supported at the ends by 

guides. The liquid air interface is located at ( )txhy ,=  where the film is symmetric 

with respect to the central line 0=y  as shown in figure (1) and we consider only the 

half film ( ) 0, txh  and the model is characterized by a very small Reynolds number. 

Let ( )vuU ,  be the fluid velocity, where u  and v  represent the velocity components  

in x  and y  directions respectively. 

The continuity equation is given by 

0
u v

x y

 
+ =

             

…(1) 

and the momentum equations in x  and y  directions are respectively given by: 

2 2

2 2
sin

u u u P u u
P u v g

t x y x x y
  
       

+ + = − + + +  
           

   …(2) 

and  

L 
0h 

x 

y = h (x , t) 

y 
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2 2

2 2
cos

v v v P v v
P u v g

t x y y x y
  
       

+ + = − + + −  
           

   …(3) 

Which hold within the fluid half layer ( )txhy ,0   and where P  and   

represent density and viscosity of fluid, g  is the gravity and t  the time.  

The boundary conditions to be imposed are as follows:  

Since the film is symmetric, we have  

at
 

0=y , 0=v            …(4) 

and  

at 0=y , 0=




y

u
          …(5) 

Furthermore at the surface of the film, the kinematics condition is given by:  

x

h
uv

t

h




−





  

         …(6)    

Also the shear stress and normal stress conditions on the free surface of the film 

are respectively given by:  

( ), 2
u v h v u

x t
y x x y x

  
       

= + + −   
          

     …(7) 

and  

2s

h u v v
P P

x y x y

     

= − − − +  
        

      …(8) 

Where sP  is the pressure at the liquid side of the free surface. We have to note 

here that since 1




x

h
 so we can neglect 

2














x

h
. 

Now we subdivide the velocity component u  of the flow field into a purely slug 

flow contribution ( )0 0 ,u u x t=   and a shear component ( )tyxu ,,1  which satisfies the no-

slip condition at the free surface, that is at hy =   ,  ( ) 0,,1 =tyxu  and thus 

( ) ( ) ( )0 1, , , , ,u x y t u x t u x y t= +
  

      …(9) 

Now (2.1) and (2.9) give  

0 1 0
u u v

x x y

  
+ + =

     

                  …(10) 

Since the Reynolds number is taken so small, the inertia term in the Navier Stokes 

equation can be neglected in comparison with viscous forces per unit volume of the 

fluid and so equations (2) are reduced to give  
2 2

2 2
sin

P u u
g

x x y
  
   

= + + 
     

                 …(11)  

and  
2 2

2 2
cos

P v v
g

y x y
  
   

= + − 
               

                …(12) 

By using equation (9), equations (7), (8) and (11), become respectively  

( ) 1 0 1, 2
u v h v u u

x t
y x x y x x

  
        

= + + − −   
        

               …(13) 
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12s

h u v v
P P

x y x y

     

= − − − +  
     

                   …(14) 

and  
2 2 2

0 1 1

2 2 2
sin

P u u u
g

x x x y
  
    

= + + + 
    

                           …(15) 

Scaling and dimensional analysis:  

If L  denotes the characteristic length scale and a typical scale for width is 

0h L=  , 1 , then the velocity scale is 2

1 0V v= , where  is V1 the sheer scale and 

0V  is the extensional scale and the transverse velocity scale is 
0V V=  and the pressure 

scale is 
0P V L= . 

We introduce the following non-dimensional variables as follows.  

1 1

0 0 0 1 1 0 0

0 0 0

, ,

, ,

, ,s s

x x L y y L h h L

u u V u u V v v V

P PL V P P L V L V    

  = =  =  


= =  =  
  = = =  

               …(16) 

 We define the Bond number ( )B  and the capillary number Ca  as  

PgLB 2=  and  
0Ca V =  

where  : is the surface tension. 

By using (16), equations (10), (12) and (15) become non-dimensional, dropping all 

primes for dimensionless variables, we obtain.  

20 1 0
u u v

x x y

  
+ + =

  
                              …(17) 

2 2
2

2 2
cos

P v v B

y x y ca


   
= + −

  
                            …(18) 

2 2 2
20 1 1

2 2 2
sin

P u u u B

x x x y ca


   
= + + +

   
                           …(19) 

Furthermore, the boundary conditions (4), (5), (13) and (14) become  

0=v  , 01 =




y

u
 at 0=y                              …(20) 

( ) 1 0 1, 2
u v h v u u

x t
y x x y x x


        

= + + − −   
        

                          …(21) 

y

v

x

v

x

u

x

h
PPs




−












+








−−= 22 12                             …(22) 

Lubrication model: 

We expand each of the unknowns vu ,1  and P  as a power series in  as follows:  

( )

( )

( ) 







++=

++=

++=







1

2

0

1

2

0

11

2

101

,,,

,,,

,,,

PPtyxP

vvtyxv

uutyxu

                            …(23) 

The continuity equation (17) gives:  
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2 2 20 10 11 0 1 0
u u u v v

x x x y y

      
+ + + + + + =   

       

 

or  

20 0 10 1 0
u v u v

x y x y

      
+ + + + =   

      

                           

By equating the powers of , we get:  

0 0 0
u v

x y

  
+ = 

  

                               …(24) 

Integrating (24) with respect to y  we have:  

( )0
0 ,

u
v y c x t

x


= − +


                              …(25) 

Since at 0=y ,we have
0 0v = , we get ( ) 0, =txc and equation  (25) reduces to give:  

0
0

u
v y

x


= −


                               …(26) 

Also equation (18) reduces to give  
2 2

0 0 10

2 2
sin

P u u B

x x y Ca


  
= + +

  
                             …(27) 

and  
2 2

1 10 11

2 2
0

P u u

x x y

  
− − =

  
                              …(28) 

and so on. Integrating both sides of equation (27) with respect to y  and since each of 

the functions
0p and 

0u are functions of x  and t  only, we get  

( )
2

10 0 0
12

sin ,
u P u B

y k x t
y x x Ca


   

= − − + 
   

                           …(29) 

Since at 0=y , we have 010 =




y

u
, we get ( ) 0,1 =txk  and equation (29) reduces to give  

2

10 0 0

2
sin

u P u B
y

y x x Ca


   
= − − 

   

                            …(30) 

equation (30) can be integrated to give  

( )
2 2

0 0
10 22

sin ,
2

P u B y
u k x t

x x Ca


  
= − − + 

  

                                      …(31) 

at 0, 10 == uhy  and so from (31), we get  

( )
2 2

0 0
2 2

, sin
2

P u B h
k x t

x x Ca


  
= − − − 

  

 

Thus equation (31) give 

( )
2

2 20 0
10 2

1
sin

2

P u B
u y h

x x Ca


  
= − − − 

  

                           …(32) 

Now from the boundary condition (29) and the expansion (23), we have  

0
0 2 s

v
P P

y


= +


                               …(33) 
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Using (24) in (33), we get  

0
0 2 s

u
P P

x


= − +


 

or  
2

0 0

2
2 sp u P

x x x

  
= − +

  
                              …(34) 

Substituting equation (34) into (30) and (32), we get respectively  
2

10 0

2
3 sinsu u P B

y
y x x Ca


   

= − + − 
   

                            …(35) 

and  

( )
2

2 20
10 2

1
3 sin

2

su P B
u y h

x x Ca


  
= − + − − 

  

                           …(36) 

Which represent the shear velocity equation.  

Also from (23), equation (19) gives  
2 2 2

20 0 1 0 1

2 2 2
cos 0

P v B P v v

y y Ca y x y


      
− + − + − + + + = 
     

 

Which given  
2

0 0

2
cos

P v B

y y Ca


  
= −

 
                             …(37) 

From (21), the shear stress condition, gives: 

                …(38) 

Comparing the similar terms of both sides of (38) in power of , we obtain  

( ) 10 0 0 0, 2
u v h v u

x t
y x x y x


       

= + + −   
       

                            …(39) 

Using equation (24), (26) and (35), equation (39) on the free surface hy = , gives  

( )
2

0 0

2
, 4 sin 4su P B h u

x t h
x x Ca x x

 
    

= − + − − 
    

 

or  

( ) 0, 4 sinsu P B
x t h h h

x x x Ca
 

   
= − + − 

   
      ...(40) 

We have to noticed that the term 
2

0

2

u

x




 can be neglected since it is of order 2  and it is 

smaller than the term 
0u . 

Evolution equation of the film thickness:  

It is known that the conservation of mass in integral form is  

( )


−=




−=




h

dytyxu
xxt

h

0

,,


      

           …(41) 

Where   is the volumetric flow rate. 
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From (19) and (23), equation (41), gives  

( )2

0 10 11

0

h
h

u u u dy
t x

 
= − + +

  
                             …(42) 

Using equation (36), equation (42) after simplification becomes  

( )
2 3 2 3

0 sin
3 3

sh h P h B
u h

t x x Ca


     
= − − + 

   

                           …(43) 

equation (43) is the evolution equation of the film thickness in non-dimensional form.  

In dimensional form equation (40) and (43) are respectively  

( ) 0, 4 sinsu P
x t h h gh

x x x
   

   
= − + − 

                             

 …(44)  

and  

3 3

0

1
sin

3 3

sh P g
u h h h

t x x




 

  − 
= − + 

   

                           …(45) 

The pressure sP in dimensional variables is defined as  

1kPs −=  

2

3
2

22

1























+


−=

x

h

xh
  

Where 1k  is the surface curvature.  

Surfactant effect:  

A convection – diffusion evolution equation for an insoluble surfactant for a film of 

small slop is given by:  

( )
2

0 2
u D

t x x

   
= −  +

  
                             …(46) 

Where ( )tx,  is a local surfactant concentration and D  is Fickian diffusion constant.  

The simplest form for small change in surface tension is given by:  

( ) ( )0 0k  = −  −                               …(47) 

where 1k is constant and the zero subscript refer to initial values of these quantities at 

the start of motion.  

The surface shear stress is given by:  

( )
x

k
x

tx



−=




=


 ,                               …(48) 

substituting (48) into equation (44), we get  
3

0
0 3

4 sin
u h

h k h gh
x x x x

   
    

= − − 
        

                       …(49) 

Furthermore equation (45), gives  

( ) ( )
3

3 3

0 3
sin

3 3

h h g
u h h h

t x x x x

 


 

     
= − − + 

     

                         …(50) 

we have to noticed that equations (46), (49) and (50) form a complete set. 
 

Sample calculation:  

Assume that cmL 1=  and 0h  must be less than L , we take 
0 0.5h = . The density 

of water 
31 cmgmp = and the surface tension cmdyne72=  and it can be reduced 
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because of the existence of the surfactant, we take the viscosity 01.0=  poises. The 

input dimensionless parameters are formed from the physical values solution we take 

2725.01 =B  and 30000=Ca . Profiles exhibit a concave-out form since the extensional 

flow that occurs before surface tension and surface tension gradient effects become 

important.  

The early time solution is determined primarily by the simplified evolution equation 

(50) which gives the form  

( )0

h
u h

t x

 
= −

 
  

and the simplified form of force balance equation gives  

0

Dh h h u
u h

Dt t t x

  
 + = −
  

                             …(51) 

and  

0 sin

4

u g
h h

x x

 



  
= − 

  
                             …(52) 

Integrating equation (52) with respect to x , we get  
( )

0 sin

4

x t

x

u g
h h dx

x

 




= −

                               …(53) 

Combining equations (51) and (53), we get  

dxh
g

Dt

Dh
tx

x

−=

)(

4

sin




                             …(54) 

Now we solve the problem by using Lagrangian-discription of motion and we consider 

an initially uniform film ( ) 0,0h x h= , 
00 x L  , where the evolution equation is 

determined by equations (51), (52) and (53).  

Let   be the initial position of a particle on the film that moves to position x  at a later 

time, that is  

( )txx ,=  and ( ) 10,  =x   

and so equation (54) reduces to gives  

( )( )dxxh
g

Dt

Dh
t

x

0,,
4

sin
)(1







−=  0 1

sin
( )

4

g
h t

 
 


= −                          …(55) 

where )(1 t  is a function that will be determined by the lower end boundary condition.  

The derivative following the motion in the Lagrangian system is given by  

 0 1

sin
( )

4

h g
h t

t

 
 



 −
= −


                             …(56) 

and following the motion, the mass conservation condition requires that  

0h h
x


=


                                …(57) 

Thus equations (56) and (57) gives  

 0 0 1

sin
( )

4

g
h h t

t x

  
 



  
= − − 

  
                            …(58) 

integrating equation (58), we get  









−−=








 tdtt

g

x

tt

0

1

0

)(
4

sin





                             ...(59) 
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since at 0=t  , 0=




x


 , so equation (59), gives  

)(tAt
x




=−



                              …(60) 

where 




4

sing
A =  and −=

t

dttAt
0

1 )(1)(   

equation (60) is a first order differential equation whose general solution is given by  









+−= − ce

At

t
etx AtxAtx )(

),(




      

                       …(61) 

since  at 0=x , 0=  so from equation (61) we get Attc )(= , and then equation (61) 

gives  

( ) 1)(),( −= AtxeAtttx                                          …(62) 

Equation (57) and (62) gives  

( ) 0, ( ) Atxh x t h t e=                               …(63) 

The solution of equation (63) is completed by specifying the boundary condition at the 

lower end of the film and here we consider only the case of a freely moving film of 

initial length L  and accordingly the suspended weight below a given material element 

remains constant in time, this means that 
1 0L =  and so equation (63), gives  

( ) ( 0 0, 1 Atxh x t h AL t e= −                              …(64) 

For drainage of a film on a frame with a fixed lower boundary as treated in this 

problem, the no flow condition requires that ( )0 0 , 0u L t =  and the general expression 

for the speed variation can be obtained from the profile equation:  

( )
( )

0

0

,1
,

x h t
u x t d

h t





= −

                              …(65) 

equation (64) and (65), gives  

( )0

1 1 1
,

Atxe df x
u x t

At t f dt t

−  
= − − 

 
                            …(66) 

It is necessary to note here that the condition ( )0 0 , 0u L t =  provides a new formula for 

the function ( ) 01f t AL t= −  which appears in equation (64) subject to the condition 

( ) 1→tf  as 0→t , and a closed expression for ( )tf  can be found. From equation (66) 

and the condition ( )0 0 , 0u L t = , we get     

0

0( ) 1

( ) 1
AL t

f t AL
dt dt

f t t e
−

  
= − 

− 
   

which gives  

0
( )

1

c

AL t

e t
f t

e
=

−
                               …(67) 

As ( ) 1→tf  as 0→t , and from (67), we have 
0

ce AL=  and so equation (67) becomes  

0

0( )
1

AL t

AL t
f t

e
=

−
                               …(68) 

which is the formulation for )(tf  under the lower end boundary condition and thus 

equation (64) can be formulated by using equation (68)  to give  
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( ) )0
1

0 0, 1
AL t Atxh x t h L At e e

−

= −
                            …(69) 

Which is the required evolution for the thickness of the film.  

Now we introduce the following non-dimensional variable: 

0h h h −= , 
0x L x= , 

4

0

3

0 0

3 L
t t

h





−= , 
0 0h L=     

Now equation (69), gives 
4 4
0 0

03 3
0 0

1
3 3sin sin4

4 40
0 3

0

sin 3
1

4

L Lg g
t t L x

h hg L
h L t e e

h

    

    

 

− −

−

− −
 
 = −
 
 

 

or  

( ) xtCBtCB
eetCBh

−− −
−− −= 11

1

1 1                              …(70) 

where 
24

sin3


=


C  

or  

0
1

B
B =


 (the modified Bond number). 

By dropping tildes, equation (70), gives  

( ) CtxB

tCB
e

e

tCB
txh 1

1 1
, 1

−
=

        

           …(71) 

equation (71) is the non-dimensional form of equation (69).  

Some of the solution curves are shown in figures (2), and (3) for different values 

of the inclination angle   and for different values of time.  

 

 

 

 

 

 

Figure (2): Draining film profile for 2,0 == tt t and 3=t inclination 

 angle 
30=  and Bond number 1.0=B  . 
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Figure (3): Draining film profile for 01.0=t t and inclination angles 

  60,30=  and 
90 . 

Conclusion: 

The film drainage reproduces different features that include the shape of the film 

profile and also in the draining time with or without surfactant effects. The film drains 

quickly when no surfactant exists and have a hollow ground appearance, but when the 

surfactant with high concentration exists, the film quickly look into an immobile 

interface with a parabolic shape that drains in slow manner and retains an appreciable 

thickness for long time and the film shape will be concaved out if the time drainage 

increases.  
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