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ABSTRACT

In this paper we consider step-size control in one class of Adams
linear multi-step methods for Ordinary differential equation.  Theoretical
results are presented for Adam-Bashforth-Moulton formula using both
Error-per-step (EPS) & Error-per-Unit -Step (EPUS) controls. These
obtained by considering a 2D system of the form:
dQ,

dh :Qz
dQ,
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Keywords: Ordinary differential equation, Adam-Bashforth-Moulton
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Q,(h) :T(h—s)q(s)ds forh >0

3
a6 =[J6+t -t =TJ6+¥) . % =t,—t,,
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1. INTRODUCTION:

Two of the most popular families of multistep methods are the so-
called Adams families, which are based on the exact integrating
polynomials. One family (Adams-Bashforth) leads to explicit methods; the
other (Adams-Moulton) leads to implicit methods [1],[3].

Linear multi-step methods (LMM) form the basis of a wide range of
ODE integrators. Whereas they are often very efficient in advancing the
integration, the implementation of suitable stepsize selection strategies can
be non-trivial. Given a user specified error-per-step, or error- per-unit-step,
a nontrivial polynomial equation must in general be solved, to obtain a
suitable step-size h” for the following step.

Wille' in 1994 [4], Numerical Analysis Report No0.247, showed that
applied to Predictor -Corrector schemes, one natural error estimate may be
obtained by comparing the values yielded by the corrector and predictor
Stages

k-1
Pk+1,n+1 (t) = I3k,n+1 (t) + H (t - tn—i ) f " [tn+1 e ’tn—k+1]
i=0

by an expression of the form
thet k-1

f [ty thoscal | [ ] —t,)dt Obtained by
w0 :

4~ 4

Q(a)=Q,

and its transformed analogue

dh__ 1
dQ  Q(H(Q)
h(@Q,) =2

in this paper we consider the 2D system of the form :
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dQ, _
W _QZ
dQ, _

i =q(h)

where Q, (h) = [ (h-s)q(s)ds forh>0 and
k-2 i k-2

q(S):H(S+tn _tn—i):H(S_'_lPi) g ‘Pi :tn _tn—i
i=0 i=0

2.ADAMS FORMULA:
2.1- Predictor-Corrector Schemes: [4],[2]
Given an ODE
y'()=f(t.y(1)
the k-th order Adams-Bashforth and (k+1)-th order Adams-Moulton
methods to advance a numerical solution {)7, ~ y(t, )} across a step [tn,tn+1]

may be written as

tn+1
. ym—l = yn + ka,n (t)dt
t

n

and

tn+1

yn+l = yn + .[Pk+l,n+1(t)dt

ty
Respectively, where Pij is the (i-1)-th degree polynomial defined by
the function values {E = f(ti,yi)} at the points {tj,tj,l,...,tjfhl} .Such
formulae are usually used in predictor - corrector pairs [5]. Denoting the
Adams-Bashforth estimate Vnp+1 , the predictor (Px) , and using this value in
the definition of Pk+1,n+1 ,by the second formula we obtain a new value ,
V.., for y(t.+1) .we refer to this as the corrector (Ck+1) .The resulting Adam-

Bashforth-Moulton scheme may be expressed PkECk+1E where E denotes
the intervening function evaluations and the subscripts, the order of the
equations used.

2.2- An Error Estimate

Applied to the above scheme, one natural error estimate may be
obtained by comparing the values by the corrector and predictor stages. That
IS
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k-1
Pk+l,n+1 (t) = I:)k,n+1 (t) + H (t o tn—i ) f i [tn+1 L ’tn—k+1]
i=0

By the expression of the form
thil k—2

LR P S ) | [(E AT
t, i=—1

P
where f [tn+1,---,tn_k+1] here denotes the (k+1)-st Newton
divided difference through the points

{(ti’yi)i(tnﬂ’ YS+1) fi=n,....n-k +1}

2.3- EPS Stepsize Control:
Define

Q,(h) ZT(h—s)q(s)ds forh>0
and 0

Q(S)Zﬁ(s+tn _tni):ﬁ(s+qji) ) \Pi :tn _tn—i :

Given a requested step tolerance € and using an EPS error control

strategy, to advance a step [tn,th+1] we would ideally choose h'=tns1-t
such that:

SUp Ql(h) f p[tn+1,tn""’ tn—k+1]

0<h<h”
However, since no a priori f-information is known for the desired
step , it is usual (assuming a slow variation in f& ) to approximate

P
FP Tty tygn] & Tl ]
By the montonicity of Q1(h) for h > 0it then suffices to solve:

Ql(h*) = ﬂ«* ............... (2)
for (agsuming f [tn yrony tn—k] * 0), ﬁ* =c /‘ f [tn ’tn—l""’tn—k ]‘ .

=€ e (1)

2.4- A Numerical Approach
To solve (2), differentiating with respect to h we note, however, that

Q/ (h) = [a(s)ds
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and
;(h) =ac(h).
Given this, Q1 may be redefined in terms of differential equation
dQ, _ Q,
ddg .................. 3)
zZ =q(h
pr a(h)

for h > 0given Q=0 where Q=[Q1,Q2]".
Solving for h* such that Q,(h")=4" then reduces to a so-called g-
stop problem [3]. Reversing coordinates

dh 1
aQ, Q)

.................. 4
dQ, _ a(h) @
dQ, ~ Q'

and noting that h is monotone in Q: for Q1>0 , we observe however that
given suitable starting values for ( a, Q(a)), integrating (4) across
[Qi(a),A] provides a simple direct expression for the required stepsize

h™ =h(4). This is our key advance . The direct solution of (4) in the

Adams EPS case is, however, complicated by the singularity at h=0. As
we now show, this does not occur for EPUS schemes: they are singularity
free. Theoretically, it is hoped that equations of the form (4) may also
provide insight into how new analytic stepsize estimators can be derived.

2.5-EPUS Stepsize Control
To adapt the above error-per-step strategy to an error-per-unit-step
(EPUS) strategy, we merely need replace (1) by an equation of the form:

SUP Q, (1) f Pltyiatyoo by sl /| =

0<h<h” '
writing
~ Q,(h)/h ‘h>0

h)=< 7 T e e 5

Qi(h) {0 oo (5)
we now , following of the EPS case , consider equations of the form
QM) =4 (6)
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where A =€ /| P[t, b, 4ot ]
Taking limits, and given that
Qll (5) = Qz (S)
Q4(s) =1(s) i
Is strictly positive monotone increasing for h > 0,it thus follows that Q, (h)

is continuous for all h>0.
We note

Qu(h) = [ Q;(s)ds = [ Q/(s)ds < h. max Q/(s) = .Q; (h)

Q,(h) = [[a(s)ds = [ Q;(s)ds < h. max Q; (5) = h.Q; (h)

for h>0, and thus

N~ .1 )
0<1imQ, (h) =lim - Q,(h) < limQ/ (h) =0
I:zifferentiating
Q! (h) =D, hQ,(h)}

1 1,
= Q)+ Q] ()

— S 1-Qu(h) + hQ! (h)]
and using the result (7)

Q,(h) <hQj (h)
Q,(h) <hQ;(h)
it follows that (51’ (h) s strictly positive and so Qi1(h) T on h>0. Defining

1 1
FQl(h) . & h_2 Qz (h) .

=0 0

.1 -1 ; :
as the L'LTJFQl(h) & L'EJFQ?(h) respectively we note by Hopitats

rule :
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1 i Qu(0)
ne 2O T &
1 - Q;(h)
Q) =lim=2
Given

Q/(N)/h=Q,(h)/h=r(h)
Qi ()/h=Q,(h)/h=r(h)

r,(h) = } M(s—t, —t,_)ds
where 0 i1
r) =10t~
this implies
~ 1 ~ 1
Q,(0) = Sh (0) & Q;(0) = K (0)

which is strictly positive . Defining

_—y+r1(x) x>0 _—y+r2(x) x>0
Fixy=1," & F)=
Erl(x) x=0 Erz(x) x=0

we can then obtain él(h) & éz(h) by direct integration :

QM =FRMOQMm . GO =F(0QM)
Q(0)=0 Q,(0)=0

thus by (8)&(9) , (5/1(h) & 6/2 (h) is strictly positive forall h>0.
The above, and the coordinate reversed equation,

1
R(Q.).Q,)

1

N . h(0)=0
F((Q).Q)

h(Q) = , h(Q,) =
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are therefore singularity free. The validity of the boundary condition
h(0)=0 relies on the continuity of (5) .re expressing (6) as Ih* = Ql(ﬁ*)
Is equivalent for ﬁ* > O but introduces a trivial root at ﬁ* =0 .our
representation 4 = (Sl(ﬁ*) removes this.

CONCLUSION:

Theoretical results are presented for Adam-Bashforth-Moulton
formula using both Error-per-step (EPS) & Error-per-Unit -Step (EPUS)
controls. These obtained by considering a 2D system of the form :

dQ,
dh =Q,
dQ,

. =q(h)

h
where Q,(h) = I(h —5s)q(s)ds forh>0 and
0

a©) = [16+t -t ) =[T6+¥) . ¥ =t,—t,..
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