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ABSTRACT

The aim of this paper is solving system of non-linear Volterra
integral equations of the second kind (NSVIEK2) numerically using
Predictor-Corrector methods (P-CM). Two multistep methods (Adams-
Bashforth, Adams-Moulton). Convergence and stability of the methods are
proved and some examples are presented to illustrate the methods. Programs
are written in matlab program version 7.0.
Keywords: Adams-Bashforth method, Adams-Moulton method, Runge-
Kutta method, system of non-linear Volterra integral equation.
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1. Introduction
A predictor-corrector method (P-CM) is the combination of an
explicit and implicit technique. (Delves and Mohamed, [3]), (Delves and
Walsh, [4]), (Hall and Watt [5]).
(Ahmed, [1]) Solved system of non-linear Volterra integral

equations of the second kind using computational methods, (Babolian and
Biazar, [2]) used Adomian decomposition method to find the solution of a
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system of non-linear Volterra integral equations of the second kind, (Jumaa,
[6]) find approximate solutions for a system of non-linear Volterra integral
equations using B-Spline function, (Linz, [8]) Solve Volterra integral
equations of the second Kkind using two (block-by-block) method,
(Maleknejad and Shahrezaee, [9]) solve a system of Volterra integral
equation numerically using Runge-Kutta method, (Waswas, [10]), used
modified decomposition method to treatment non-linear integral equations
and system of non-linear integral equations analytically, (Laurene, [7]) in
this book derive the formula of Runge-Kutta method of order (three, four,
five), Adams method (Moulton, Bashforth), and Adams Predictor-Corrector
method and use this method to find numerical solution of ordinary and
partial differential equation .

In this paper, the Adams Predictor-Corrector method is applied for
the first time to find the numerical solution for a (NSVIEK2), which is
defined by Jumaa, [6]:

F(x):G(x)+jK(x,t,F(t))dt, (1)
0

where
F) = (f1(X), o0, T 0T, FO) = (1 (1), ... T (),
G(X) = (91 (X, G (X)),
K(x,t, F(t)) = (ky (X, t, F(t), ...k, (6,1, F@))T,

In this paper, the method is based on the explicit fourth-order Adams
Bashforth method as Predictor and the implicit fourth-order Adams-
Moulton method as Corrector, with the starting values from the fourth-order
Runge-Kutta method (Laurene, [7]).

2. Adams Method: (Delves and Walsh, [4]), (Hall. and Watt, [5])

The general multistep method for approximating the solution to the
initial-value problem:

u’'= f(t,u), ast<b, u@=«a

can be written in the form:

Wo=a, W, =a;, W,=0a, .. Wpq=0Un

Wiy =8 g Wi +8p pWig + oo +89Wiyg m +hF (G, D Wiy, Wi Wiy ) -(2)
where

F(i, b Wiig, Wiy, Wiy ) =00 F(tig, Wisa) + by £ (G W) + o+ B F (tiiaom s Wiam)]

)

for each i=m-1,m,..,N -1 where a,,a,,...,a,,; and by,b,...,b,,, are constants
and, asusual, h=(b—-a)/N and t; =a+ih.

94



Using Predictor-Corrector Methods for Numerical Solution of System of ...

when b, =0, the method is called explicit. whenb,, # 0, the method is
called implicit.

The explicit Adams methods, known as Adams-Bashforth methods.
The implicit Adams methods, known as Adams-Moultons method.
2.1 Explicit Fourth-Order Adams-Bashforth Method (A-BM):

(Delves and Walsh, [4]), (Hall and Watt, [5])
put m=4 in equation (2), we get:
Wo=a, W, =0qp, W,=a,, W;=a3
Wipg =W +hFE (G, D Wi, Wi Wig, Wip, Wig) -(4)
where F(t;,h,w,,, wi,w;,_;,w;_,,w, 5)is the backward difference polynomial
through (4, f(t;, u(t)) s (i1, f (g, uCtig))) s (Gisas F(tia, U(t2)))
(ti_s, f(ti_5,u(t;5))) that given by:

F (Wi, Wiy Wi, Wi_g) =L () + 2 VF (i) + 2 V2 (6 we) 4> V2 £ (1 w)]
F (t P, Wi, W) =P (1) + 201 6 w) = £ (g, a)] L )

S2f (W) + f(ti_z,wi_z)hg[f (tow,) —3F (t 1w, 1)

+3f (tio, Wip) — F(tis, Wig)]}

1 5 3 1 10 9
F(ti, hwi, Wiy, Wi, Wi_3) = h{(1+E+E+§)f(ti ,Wi) + (_E_E_g)f(ti—liwi—l)

5 9 3
+ (E + g) ftio, W)+ (- g) f(ti_3,wi_3)}
F (i, h wi, Wiy, Wip, Wi_g) = 2—h4[55f (i, w;) =59 F (tig,wi4) +37F (45, wi_5) —9F (i3, wi_3)]

.(5)
55 59 37 9

S0 M=4,by =0,by g =2 by 5 = b s

4 24’ M3 T o M4 T 0

i.e
Wi =W, + 2—h4[55f (ti,w;) =59 f (ti_y, Wiq) +37F(ti_p, W) —9F (ti_5,Wi_3)]...(6)

for each i=34,...,N -1, the local truncation error for the predictor is

5

zia (h) =%u(5) (&)h®, for some &, € (t,_,,t.,)

20

2.2 Implicit fourth-Order Adams-Moulton Method (A-MM):

(Delves and Walsh, [4]),(Hall and Watt, [5])
put m=3 in equation (2), we get:
W0=06, leal, W2=0{2
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Wiy =W +hFE(G,h Wiy, Wi, Wi, W) .(7)
Where  F(t;,h,w,,w;,w,_;,w,,) IS the forward difference polynomial
through (4, f(t, u())), (64, F (61, u4)) (g, Ftip.u(t ), that given by:

1 1 1
F(ti1thi+1lWivWi—l’Wi—z):h[f(tiywi)+5Af (G, wy) — — A% F(t, W) + — A3 (8, w;)]
12 24
1 1
F(ti, h,wig, Wi, wig, wip) =h{f(t vWi)"’E[f (tises Wisg) — f(ti1Wi)]_E[f(ti+l’Wi+l)

26 (W) + f(ti_l,wi_1>]+§[—f(tM,wm)+3f(ti,wi)
=3f (i, W) + F(tio, wisn)]}

1 1 1 1 2 3
F(ti7h!Wi+1’Wi7Wi—1vWi—2):h{(E_E_ﬂ)f(ti+l1Wi+1)+(1_E+E+ﬁ)f(tivwi)
1 3 1
+ (_E - ﬂ) f (i, Wig) + (ﬁ) f(tio,Wip)}
then
h
F (i, b Wi, Wi, Wi, W ) = a[g f(tisg, Wing) 29 (6, wy) =5 F (tig, wig) + F (o, wip)]
9 19 5 1
SO :3’b :—,b =, _ :——,b _3 =
M= S0 = g 1 =5 Pm2 =75 s = o)
i.e

h
Wiyg =W +§[9f(ti+1vwi+1)+19f(ti W) =5 (tig, Wig) + F(tig, Wip)l ...(9)
for each i=2,34,...,N -1, the local truncation error for the corrector is

19
7, (h) = —%u‘5> (¢,)h°, for some & e(t; ,,t;,;)

2.3 Adams Predictor-Corrector Method (P-CM): (Laurene, [7])

The (P-CM) combines the fourth-order Adams Bashforth method as
Predictor and the implicit fourth-order Adams-Moulton method as
Corrector:

w, IS given; w;,w,,ws, are found from a Runge-Kutta method.
Then, for i=34,..,.N-1

Wiy =W + %[55“ (i, w;) =59 (t; g, Wi 1) +37F (85, Wi ) —9F(t; 5, w;_3)]...(10)
Wiy =W + %[9 f(tig, Wig) +19F (6, W) =5 F (t g, Wi g) + (6, Wi p)]  ...(11)

3. Solution of NSVIEK?2 using (P-CM):
Consider the ith equation of (1):
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[100=9:00+ [k (0t @, F, 0,0 T Ot -(12)

The form of the explicit fourth-order Adams Bashforth equation (10) can be
written as:

h
Wi a1 =W +z[55ki(xj+lltjv f1js Fo i fmj) = 59K (Xjhas ey Fo s Fo g T )

+37Ki (X 1.t 00 Fojor Fojare Fnjo) = 9Ki (Xjiantjar Fujias Fojigeee Fmja)]
..(13)
fi a1 = Gijur + Wi jua ..(14)
where  f; ;3= fi(xp1) Gijer = 9i (Xjaa)s Wi jag = Wi (X )
The form of the implicit fourth-order Adams Moulton equation (11) can be
written as:

h
Wi j+1 = Wi j +§[9ki(xj+1'tj+lv f1 e 2 jans e T jan) $29K (Xa00 by, Frg Fojens Finj)

=K (Xjyotjoe, Fo o Fo s Fon o) H K (Xaa o, fr o fo o0 finjo2)]
...(15)
fiji1 = G0 jua + Wi jua -(16)
where f; i = fi(Xj1), Gija =0i (K1) Wi ja = Wi (Xj1)
4. Stability

Definition 1: (Delves and Walsh, [4])
Let 4, 4,,...4, denote the (not necessarily distinct) roots of  the
characteristic equation
AN —a, A" - —att—a, =0 ..(17)
associated with the multistep difference method
Wo=a, W =a, W,=0a, .. W=
Wiig =8m W + 85 oWig + .. + Wiy + hF (G, Wiy, Wi Wiy )
If || <1 foreach i=123,...m and all roots with absolute value 1 are simple
roots, then the difference method is said to satisfy the root condition.

Theorem 1: (William and Richard, [11])

A multistep method of the form
Wo=a, Wy=a, W,=0a, .. ,Wnyq=0na
Wipg =8 Wi + 8 oWig + .o+ 8gWiygm + F (G, Wipg, Wiy Wi )
is stable if and only if it satisfies root condition; Moreover, if the difference
method is consistent with the differential equation, then the method is stable
if and only if it is convergent.
4.1 Stability of (P-CM)

We have seen that in the equation (13),
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a8, =0,8, =0,a, =0,and a; =1
Then the characteristic equation for (13) is, consequently.
-2 =230-1)=0
which has roots 4, =1, 4, =0, 4, =0,and 4, =0.
Hence, by definition 1 equation (13) satisfies the root condition
Then, by theorem 1 it is stable.

Also, we have seen that in the equation (15),
ap; =0, =0,and a, =1

Then, the characteristic equation for (15) is, consequently.
B -22=22(1-1)=0

which has roots 4, =1, 4, =0, and A, =0.

Hence, by definition 1 equation (15) satisfies the root condition
Then, by theorem 1 it is stable.

Algorithm of Runge-Kutta Method:
Stepl: fIX fi,O = gi (O) y i:1,2,..m
Step2: Letting h =b_Ta, neN.

Step3: Letting j=12,..n+1
Step4: Find u; ;, LY, L2, L3, L4 £, For i=12..m using the following
Uij = fi,j = 9i (1 —Dh)
L{} = fija
L& =uij +9i((] —1)h+h/2)+g[ki(jh,<j ~Dh+h/2,L%)
L& =u;; +gi((j—1)h+h/2)+2[ki(jh,(j—1)h+h/2, L)
L =u; ; +0; ((j —Dh+h) + hlk; (jh, (j —Dh+h, L)
fij=uij+ gi<jh)+2[ki(jh,(j ~Dh, LH) +2k; (jh, (j-Dh+h/2,1P)
+2k; (jh, (j =Dh+h/2, L) +k; (jh, jh, L)
Algorithm of (P-CM):
Step (1): Fix fiy=g;(@, 1=12,...,m.
Step (2): Letting h:b_Ta, neN.

X; =a+ih, t;=a+ih.
Step (3): Calculate g;(x), for i=12,...,m.
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Step (4): Using the algorithm of Rung-Kutta method, to find the unknown's
fii, fio,and fis.

Step (5): For j=345...,N

Wi = Wi+ [55k Kty Fago Fo e fn ) = 59K (X joa s fo g T2 jgnen i jia)
+37ki(xi+l’ j-2» fle'—Z’ f2,j—2""7 m,j—z) —9ki(Xj+l,tJ-_3, f1,j-3: fzvj_37---. fm,j_3)]

..(18)

fn(?+1 =0iju +W.( ,)+1 ..(19)
Wija =W+ [9k Kgon e 50 20 ) 429K (X gty Fr o o )
5k|(x]+1’t]—1’ fl,j—l’ f2,j—l'"" m,]—1)+k|(X]+1’tJ—2’ fl,j—2* fzvj_z,..., m’j_z)]

..(20)

fijs1 = 9ijar Wi jn ..(21)

Step(6): L.S.E= (exact(x) - f; ;)2 i=1...m,  j=1..N

5. lllustrative Examples

In this section, two examples are presented for demonstrating the
method and a comparison among the solutions obtained by this method
against the exact solution which has been made depending on the least
square errors (L.S.E).

Example 1: (Waswas, [10])
Solve a system of non-linear VIEK2’s:

f,(x) =sec(x) — x + I (f,2(t) — f.2(t))dt

f,(x) = 3tan(x) - x — j(ff ) + £2()dt
0

The exact solution of this system is:

fi(x)=sec(x) and f,(x)=tan(x)

After solving this system by Predictor-Corrector method with h=0.1 in

equations (13)-(16) for A-BM and A-MM and equations (18)-(21) for P-

CM, we obtain the following numerical solution.

Table (1) comparison between the exact solution sec(x) and the numerical
solution fy(x) of Example 1 taking h=0.1.

X Exact A-BM A-MM P-CM

0.0 [1.0000000000 |1.0000000000 |1.0000000000 |1.0000000000
0.1 [1.0050209184 |1.0050206529 |1.0050206529 |1.0050206529
0.2 [1.0203388449 |1.0203381445 |1.0203381445 |1.0203381445
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0.3 |1.0467516015 |1.0467500295 |1.0467500295 |1.0467500295
04 |1.0857044284 1.0857025412 |1.0852627697 [1.0856976449
05 |1.1394939273 |1.1394615248 |1.1381423415 |1.1394784299
06 |1.2116283145 |1.2115250364 |1.2085446655 |[1.2115971159
0.7 |1.3074592597 1.3071839148 |1.3011583728 [1.3073969157
0.8 |1.4353241997 1.4346596963 |1.4229915908 [1.4351938722
09 |1.6087258105 |1.6071582434 |1.5846849365 [1.6084310654
1.0 [1.8508157177 1.8470647612 |1.8026544923 [1.8500734142
L.S.E 1.70560e-005 |3.10079e-003 [6.60024e-007
R.T 0.1100second |0.1560second |0.1400second

Table (2) shows the comparison between the exact solution tan(x) and the
numerical solution f2(x) of Example 1 taking h=0.1

X Exact A-BM A-MM P-CM

00 (O 0 0 0

0.1 |0.1003346721 [0.1003342422 |0.1003342421 (0.1003342422
0.2 |0.2027100355 [0.2027090714 |0.2027090714 (0.2027090714
0.3 |0.3093362496 [0.3093344666 |0.3093344666 [0.3093344665
04 |0.4227932187 [0.4229478548 |0.4223727949 (0.4227722795
05 |0.5463024898 [0.5466490912 |0.5452558909 [0.5462537940
0.6 |0.6841368083 [0.6847911760 |0.6821812399 (0.6840434458
0.7 |10.8422883805 [0.8434304213 |0.8390598963 (0.8421161023
0.8 |1.0296385571 [1.0316635320 |1.0246489149 (1.0293138426
09 |1.2601582175 |1.2638895190 |1.2527272100 (1.2595096789
1.0 |1.5574077246 |1.5647973445 |1.5465474314 |1.5559902860
L.S.E 7.45061e-005 [2.13582e-004 |2.57638e-006
R.T 0.1100second [0.1560second |0.1400second

Table (3) shows the least

values of h for Example 1.

square errors for f,(x) and f, (x) with different

Numerical method P-CM
olution of
Solutio h 0.05 0.02 0.01
fL(x) L.S.E 6.29169e-010 6.73993e-013 1.95962e-014
RT 0.2030second 0.3290 second | 0.5940 second
f,(x) L.S.E 1.98911e-008 3.01182e-011 2.24865e-013
R.T 0.2030 second | 0.3290 second | 0.5940 second
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Figure(1) shows the comparison between the exact solution sec(x) and the
numerical solution f1(x) using A-BM of Example 1 taking h=0.1.
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Figure(2) shows the comparison between the exact solution tan(x) and the
numerical solution f2(x) using A-BM of Example 1 taking h=0.1
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Figure(3) shows the comparison between the exact solution sec(x) and the
numerical solution f1(x) using A-MM of Example 1 taking h=0.1.
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Figure(4) shows the comparison between the exact solution tan(x) and the
numerical solution f2(x) using A-MM of Example 1 taking h=0.1
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Figure(5) shows the comparison between the exact solution sec(x) and the
numerical solution fi(x) using P-CM of Example 1 taking h=0.1.
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Figure(6) shows the comparison between the exact solution tan(x) and the
numerical solution f2(x) using P-CM of Example 1 taking h=0.1
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Example 2: (Jumaa, [6])
Solve a system of non-linear VIEK2’s:

f,(X) = x(l—%x)+£ln|f2(t)| dt

X
f,(x) = —(xe* +1)+ J'te B gt
0

The exact solution of this system is:
fo(x)=x
After solving this system by Predictor-Corrector method with h=0.1 in
equations (13)-(16) for A-BM and A-MM and equations (18)-(21) for P-
CM, we obtain the following numerical solution.

and

fy(x)=—€"

Table (4) comparison between the exact solution x and the numerical

solution f, (x) of Example 2 taking h=0.1.

X Exact A-BM A-MM P-CM

0.0 |0 0 0 0

0.1 |0.10000000001(0.0999999309 |0.0999999309 |0.0999999309
0.2 |0.20000000001(0.1999998578 [0.1999998578 0.1999998578
0.3 [0.3000000000{0.2999997793 [0.2999997793 |0.2999997793
0.4 |0.40000000001(0.3999998194 |0.4004392373 |0.4000002609
0.5 [0.5000000000|0.5000025721 |0.5009111633 |0.5000006337
0.6 [0.6000000000|0.6000049457 |0.6014126140 0.6000009292
0.7 |0.7000000000|0.7000087268 |0.7019404466 |0.7000011459
0.8 [0.8000000000|0.8000134286 |0.8024905501 0.8000012879
0.9 [0.9000000000{0.9000188603 |0.9030580543 |0.9000013590
1.0 |1.0000000000|1.0000249835 |1.0036373570 1.0000013629
L.S.E 1.26755e-009 [3.55689e-005 |8.08306e-012
R.T 0.1090 second|0.1250 second |0.1250 second

Table (5) shows the comparison between the exact solution —e* and the
numerical solution f, (x) of Example 2 taking h=0.1

X Exact A-BM A-MM P-CM

00 |-1.000000000 {-1.000000000 |-1.000000000 [-1.000000000
01 |-1.105170918 |-1.105171026 |-1.105171026 [-1.105171026
0.2 |-1.221402758 |-1.221403013 |-1.221403013 [-1.221403013
0.3 |-1.349858808 |-1.349859257 |-1.349859257 |-1.349859257
04 |-1.491824698 |-1.491842965 [-1.491813842 [-1.491823668
05 |-1.648721271 |-1.648759691 |-1.648659805 [-1.648718533
06 |-1.822118800 |-1.822179503 |-1.821943458 |-1.822114094
0.7 |-2.013752707 |-2.013838457 |-2.013364768 |-2.013745732
0.8 |-2.225540928 |-2.225653949 |-2.224796393 |-2.225531344
09 |-2.459603111 |-2.459745773 |-2.458300725 [-2.459590535
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1.0 |-2.718281828 |-2.718456185 |-2.716149269 |-2.718265841

L.S.E 7.63744e-008 |6.98349e-006 [5.85238e-010

R.T 0.1090 0.1250 0.1250
second second second

Table (6) shows the least square errors for f,(x) and f, (x) with different
values of h for Example 2.

Numerical method P-CM
solution of h 0.05 0.02 0.01
f,(X) LS.E 6.13653e-015 1.54294e-016 2.18979e-018
R.T 0.1720 second 0.3120 second 0.5000 second
f5(x) L.S.E 6.06538e-012 1.10743e-014 8.89313e-017
RT 0.1720 second 0.3120 second 0.5000 second

Figure(7) comparison between the exact solution x and the numerical
solution f, (x) using A-BM of Example 2 taking h=0.1.
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Figure(8) shows the comparison between the exact solution —e* and the
numerical solution f, (x) using A-BM of Example 2 taking h=0.1
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Figure(9) comparison between the exact solution x and the numerical
solution f, (x) using A-MM of Example 2 taking h=0.1.
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Figure(10) shows the comparison between the exact solution —e* and the
numerical solution f, (x) using A-MM of Example 2 taking h=0.1
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Figure(11) comparison between the exact solution x and the numerical
solution f, (x) using P-CM of Example 2 taking h=0.1.
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Figure(12) shows the comparison between the exact solution —e* and the
numerical solution f, (x) using P-CM of Example 2 taking h=0.1

-0.8

-1.2

exact
1.4 + P-CM

-1.6

-1.8

-2.2

-2.4

-2.6

-2.8

6. Conclusions

According to the numerical results which obtaining from the
illustrative examples we concludes the following:

1. The explicit fourth-order Adams-Bashforth method gave better

results than the implicit fourth-order Adams-Moulton method.

2. If we use the explicit fourth-order Adams Bashforth method as
Predictor and the implicit fourth-order Adams-Moulton method as
Corrector, then the method gave better results than explicit fourth-
order Adams-Bashforth method and than the implicit fourth-order
Adams-Moulton method.

The A-BM, A-MM, and P-CM methods are stable by section (4-1).
In P-CM, the error will be decreasing if we chose small values for h
(step size) and it is the faster.
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