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ABSTRACT
The n-Hosoya polynomial of a connected graph G of order t is defined by:

bn
H,(G;x) =) C,(G,k)x“, Where, C, (G,k) is the number of pairs (v,S), in which
k=0

S|=n-1, 3<n<t, veV(G), ScV(G), such that d,(v,S)=k, for each

0<k<o, =diam (G).

In this paper, we find the n-Hosoya polynomial of the square of a path and of the
square of a cycle. Also, the n-diameter and n-Wiener index of each of the two graphs
are determined.

Keyword: n-diameter, n-Hosoya polynomial, n-Wiener index, path square and cycle
square.
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1. Introduction:

The n-distance [1] in a connected graph G =(V,E) of order t is the minimum
distance from a singleton , veV to an (n-1)-subset S, ScV , 3<n<t, thatis,
d, (v,S)=min{d(v,u): ueS}, 3<n<t.
It is clear that
d, (v,S)=0 ; when v €S,
d,(vS)=>1; when v ¢S.
The n-Wiener index of a connected graph G =(V,E) is the sum of the minimum
distances of all pairs (v,S) in the graph G, that is:
W,(G)= > d,(v,S),3<n<t.

(v,S)/S|]=n-1
veV,ScV

The n-diameter of G is defined by:
diam,,G = max{d, (v,S):ve V(G),|§=n-1,S< V(G)}.

Now, let C, (G,k) be the number of pairs (v,S) , |§=n-1, 3<n<t, veV,

ScV, such that d, (v,S)=k, for each 0<k <3, =diam,(G) , then the n-Hosoya
polynomial of G is defined by:

6!1
H,(G;Xx) = > C,(G,k)x*.
k=0
We can obtain the n-Wiener index of G from the n-Hosoya polynomial of G as
follows:
d &
W, (G)zd—Hn(G:X)IX=1 =2 kC,(G,Kk).
X k=1
For a vertex v of a connected graph G, let C,, (v, G, k) be the number of (n-1)-subsets S
of vertices of G such that d,(v,S)=k, for n>3 , 0<k<§,. The n-Hosoya

polynomial of the vertex v, denoted by H, (v,G;X), is defined as:

H, (v,G;x)=>C,(v,G,k)x*.
k>0
It is clear that for all k>0,

> C,(v,G,k)=C,(G,k),
veV(G)
and
D H,(v,G;x)=H,(G;x).
veV(G)
For more information about these concepts, see the References [1, 2, 5, 6].

The next lemma will be used in proving our results.

Lemma 1.1:[1] Let V be any vertex of a connected graph G. If there are r vertices of
distance k>1 from Vv, and there are s vertices of distance more than k from Vv, then,
for n>3,

14
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C (v,G,k) :{;tsj_[ns—lj' (1)

Definition 1.2: Let G be a connected non-trivial graph . The square G? of the graph G
, introduced by Harary and Ross [7], has V(G?)=V(G) with u,v adjacent in G2,
whenever 1<dg(u,v)<2.

Notice that the square of complete graph, star graph, wheel graph, complete bipartite
graph are complete graphs.

In [1,2,3,4] , the n-Hosoya polynomials for many special graphs and many
compound graphs are obtained . In this paper , we continue such works by obtaining the
n-Hosoya polynomials of the square of paths and cycles.

2. The n-Hosoya Polynomial of the Square of a Path:

In this section , we obtained the n-Hosoya polynomial of the square Pt2 of a path

P, of order t . We shall consider two main cases of Pt2 according to the parity of t.

First Case : Event, t=2r, r>2.
Let P,:u,,u,,u,, ... ,u,,then PZ is shown in Fig.2.1, and by relabeling its vertices, we

H 2
have Fig. 2.2 for P,, .
u
u, uy Ug Ug U  Up Uiy U Wy

Fig. (2.1). The Path Square P?

Vor Vorcl Voo Vory Vora Vors Vi3 Vi Vit

Varg
Fig. (2.2). The Path Square P2

Second Case : If t is odd , then there exists an integer r such that t=2r+1. The graph
PZ is shown in Fig 2- 3

AT

A%
2r+1 Vool Vo - Vor s +3
TV Vr

Fig. (2.3). The Path Square P;, .
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Theorem 2.1: For t>5and n>2 ,let r= EJ , then,

r+1—B—l , for ewven t,
diam (P?) =
r+1—BJ , forodd t .

Proof:
(1). Let t be even , then t=2r.

From Fig.2.2 , we notice that diam(P>)=d(v,,v,,,) =T, then diam_(PZ)=d, (v.,S) ,
n>2, where S consists of the first n-1 wvertices from the sequence

{Vr+l;vr’Vr+2;Vr—l’vr+3;vr—2'vr+4; ;Vz’Vzr}-

Thus , if n is even , then

S={Vr+l} y N = 2

S:{VH-J.'Vr1Vr+2;Vr—l’vrﬁ-:%;vr—z’Vr+4; Y V } n= 4 6 8 2

r+2—7
2

So, d,(v,,S)= r+1—% .

If n isodd, then

S ={Vr+l ’ Vr ;Vr+2 ’Vr—l ’ Vr+3 '

Vo, 3V o,V .}, Nn=357,..,2r-1.
r+l-——

S0, d (vl,s)_r+1-”7+1 .

Therefore , diamn(Pzzr)=r+1—E—| ,forall n>2 .

(2). Let t be odd , then t=2r+1.
From Fig.2.3 , we notice that diam(P; ,)=d(v,,v,,)=r, or d(v,Vv,,,), or

d(V,,1,V,,1)), then diam (P;.,) =d,(v;,S) , [S|=n-1,n>2, where S consists of the

first n—1 vertices from the sequence {V.;,V.,;V. |V, 3;V, V. 4 5iVy, Voo 3.
Thus, if n isodd, then,
S={v V. V.3,V 4,V

r+1 1 r+21 r o Yr437 r+41 "

Vv v .,},n=357,..,2r+l1.
r+l4+—
2

r+2—n—_1’
2
n-1
So, dn(vl,S)=d(v1,v o l)_r+1—T
2

If n iseven, then,
S={v VoV, LV VY }n—468 ,2r.

r+11 r+2’ rr Yr437 Yr-10 Vr44 0
r+2—§

S0, d,(v,,8) =d(v,,v__ n):r+1—% .

Therefore ,

diam (PZ.)=r+1- BJ foralln>2. #
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Remark : Throughout this work , we assume that (Zj =0,ifa<b.

Theorem 2.2: For any n>3, the n-Hosoya polynomial of P? , t>6, is given by:

3
H,(PZ;x)=> C, (PZ, k)x",

k=0
Where , §, =diam  (P?) ,
C(PZO)—tt_l (2.2.1)
co=t ],

o I Al Y el T el | PPN (s 222
KRS Ak Y et | Y Y | Y € +(222)

) Ht—Zk] (t—2k+1ﬂ (t—4k+3j
C,(P  k)=2 + +(t—4k +2)
n-1 n-1 n-1

2 (t—4k+i t—4k-1 5
_zg( - j—(t—4k)( - ],2sksbJ, ..(223)
Cn(Pf,k)=2Ht_2kj+[t_2k+lﬂ ,F—”Jﬂﬁkéén : (2.2.4)
n-1 n-1 2

t-1
Proof: It is clear that C, (P?,0) =t[n 2)

From Fig.2.2, we notice that in P? , there are two vertices of degree 2, two vertices

of degree 3, and t—4 vertices of degree 4. Thus, using formula (1.4.5) in [1], we obtain
2.2.2).

I(:or ea)ch vertex w and given k , let

S,(w,k) ={veV:d(w,v) =k},

S,(w,k) ={veV:d(w,v)>k}.

Eirst , we shall prove (2.2.3) and (2.2.4) for even t, assuming t=2r, r>4. It is clear,
from Fig. 2.2, that for n>3,

C.(v,,P?,k)=C_(v.,,P?K), ..(2.2.5)

for i=1,2, ... ,r. Therefore, for2<k <3, ,

r
Co(P5.K)=2>"C, (v;,P} k). .(2.2.6)

i=1

Now, let 2<k < [%"J , iInwhich &, is determined by Theorem 2.1, that is

5 =r+1—P].
2

Since, n>3, then 8, <r-1,for r>4.
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But, in proving (2.2.3), we assume that 5, > 4.
According to the given value of k, we partition {v,,v,, ... ,v,} into the following four
cases:

(1). For i=1,2, ... ,k, we notice, from Fig. 2.2, that:

Sl(vi 1 k) ={Vi+k | V2r+2—i—k}’

S, (v, K) = V(P) —{V1. Vo, oo Vg Voo i Varsaiar - 1Vard
Thus,

|Sl(vi,k)|=2 : |Sz(vi,k)|=t+1—2k—2i.

So, by Lemma 1.1, we have , for i=1,2, ... |k,

t+3-2k-2i t+1-2k-2i
C.(v,,P?,k) = — . ...(c1
B B Ml e
(2). For i=1,2, ... ,k—1, we obtain, from Fig. 2.2,
Sl(VHl—i ’ k) :{Vr—k—i+1’ Vr+k+i}’
SZ(VH—l—i’k) :V(Ptz)_{Vr—k—i+1’vr—k—i+2’ ’Vr’Vr+17 7Vr+k+i}'
Thus,
1S,V 1K) =2, [S,(V,.y 1K) | =t—2K—2i.
So, using Lemma 1.1, we obtain, for i=1,2, ... k-1,
t+2-2k-2i t—2k-2i
C.(v,. . P> k)= - . ...(c2
R N @
(3). For v, ,.,, we have
Sl(vr—k+1' k) :{er Vo Vr+l—2k}7
SZ(Vr—kJrl'k)=V(Ptz)_{vr—2k+llvr—2k+2’ ’Vr’Vr+1’ ’Vr+2k}'
Thus,
|Sl(vr7k+l1k)|:3 , |Sz(vr7k+l,k)|=t—4k .
So, using Lemma 1.1, we get ,
t+3-4k t—4k
C.(v, ,.,P* k)= - . ...(c3
n( r—k+1' " t ) ( n—l J (n—lj (C)
(4). Fori=k+1k+2, ... ,r—k,
Sl(vi ,K) :{Vi—k 1 Viekr Vaorskisa V2r—k—i+2}’
SZ(Vi’k):V(PtZ) _{Vi—k’vi—k+1’ 'Vi+k'V2r—k—i+2’V2r—k—i+3’ 'V2r+k—i+l}'
Thus,
1S,(v;,K)| =4, [S,(v; k) |=t—4k-1.
Therefore, using Lemma 1.1, we get, for i=k+Lk+2, ... ,r—k,
t—4k +3 t—4k -1
C.(v;,P? k)= — . ...(c4
N S Rl o

Thus, from (2.2.6) and summing up the formulas (c1)-(c4) we get for 2<k < {%“J :
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K[(t+3-2k—-2i) (t+1—2k-2i
2 — —
curtio=23 [ 2
t+2-2k=2i) (t—2k-2i
SATH )
(t—4k+3J (t—4kj '(t—4k+3 (t—4k—1ﬂ}
N - +(r—2k) - :
n-1 n-1 | n-1 n-1
_l[(tm2kH ) (t-dkan)] [(t-2k) (t-4ke2
B ( n-1 j_( n-1 J_+ [n—l _{ n-1 j
t—4k+3) (t—4k [(t—4k+3) (t—4k-1
J{ n-1 j_( —1j+(r_2k)( n-1 _( n-1 ﬂ}
Z[t—Zk t_2k+lﬂ+(t_4k+2)(t_4k+3J
1 n-1

n_

i[t 4K + jj (t—4k)(t_4k_1)

0 n _1
Now, we give the proof of (2.2.4) for {%”J +1<k <3, . Here, we have two cases:

(@).Fori=1,2, .. ,r-k,
Sl(vi 1 k) ={Vi+k 1 V2r+2—i—k} )
S,(vi,K) :V(Ptz)_{vpvz’
Thus,

|Sl(vi,k)|:2, |Sz(vi,k)|:t+l—2k—2i.

So, by Lemma 1.1, we have, for i=1,2, ... ,r—k,

, t—2k-2i+3) (t—2k—-2i+1
C,(vi, P k) = P P ..(d1)

(b).Forv,,,,i=12, .. ,r—k ,we have
Sl(vr+l—i k) :{Vr—k—i+1' Vr+k+i}1
SZ (Vr+l—i ' k) = V(Ptz) _{Vr—k—i+l’ Vr—k—i+2' 'Vr ! Vr+1l lVr+k+i}'

Vi Varso ik Varaiks = 1 Vart

Thus,

|Sl(v,+1_i,k)|=2 : |Sz(v,+1_i,k)|=t—2k—2i.

So, by Lemma 1.1, we have, for i=1,2, ... ,r—k,

Cn(Vm_i,Pf,k)=(t_2k_2i+2)—(t_2k_2ij- @)
n-1 n-1

Therefore, using (2.2.6) and summing up (d1) and (d2), we get for B J 1<k<3,,
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b (i (|
S
[ A

I
N
/_j_\

=2

t—2k+1j (t_ZKH
+ , because n>3.
n-1 1

Second, the proofs of (2.2.3) and (2.2.4) for odd t, t=2r+1, r>3, are similar to the
proofs of (2.2.3) and (2.2.4) for even t.
Hence, the proof of the Theorem is completed. #

Corollary 2.3: The n-Wiener index of Pt2 IS given by:

o [t-1Y) L J(t=3) (=4 . (t-5) & )
W"(Pt)_t(n—j ZKn—l}[n—ﬂ (t 4)(n_1j+k§=;kcn(a,k),

in which

Cn(Pf,k):ZKt_2kj+[t_2k+lﬂ+(t—4m+2)(t_4k+3J
-1 n-1 n-1
2 (t—4k+i t—4k -1 5,

_22( j (t—4k)( - ],23k3L7J,

) t-2k) (t-2k+1 3
C,(P7k)=2 + | |+1<k<s, . #
n-1 n-1 2

3. The n-Hosoya Polynomial of the Square of a Cycle :

There are many classes of connected graphs G in which for each k, 1<k <3,
C, (v,G,K) is the same for every vertex v e V(G) ; such graphs are called [2] vertex-n-
distance regular graphs, and for the given value of n, 2<n<t,
H,(G;x)=tH, (v,G;x), where v is any vertex of G and t is the order of G.

The graph Cf is the square of a cycle of order t, shown in Fig. 3.1. We shall find the n-
diameter, n-Hosoya polynomial, and n-Wiener index of Cf.
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Fig. (3.1) The Cycle Square C/ , t>6.
Lemma 3.1: diam (C2) =3, :1+[“T”J, n>2, t>6.

Proof: Let m :HJ ,then t=4m+r, r=0,1,2,3.

For r=2, C? isredrawn in Fig. 3.2.

Since, C? is vertex n-distance regular graph , then diam_(C?)=e, (v,).

To find the n-eccentricity of v, , we partition V(C?)—{v,} into S,S,, ... ,S,,.,, Where
Sy ={Vz.,V3., Vi, Via },

Sy ={V4 Vs, Vi2Vis}

S;={Vs,V7,Vi 4,V s},

S; ={Vy;:Vaji1 s Vi agiay 1 Vicajur b

S ={Vom s Vomi 1 Vicomez 1 Vicomsa b

S0 =V(C) - (US, UtvY)
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V21n+' v

2m

VZm +3 v V2111+1
2m+2

Fig. (3.2). The Cycle Square C? , t=4m+2 , m>1.

It is clear that each vertex of S; , 1< j<m, is of (standard) distance j from v,;

and each of the other vertices (if exists) of Ct2 (here in Fig. 3.2, we have

{v, 1}:{v2m+2}=8m+1) is of the distance m+1 from v,. Notice that if t=4m+1,
E+

then S, is empty , and if t=4m then, S, is empty and S, consists of three

elements; if t=4m+2, t=4m+3, then S,, consists of one, respectively two,

elements.
m+1

Let k be the greatest positive integer such that the set USi consists of at least (n-1)
i=k

vertices. Therefore, since |S; |<4.

4k-D+1+(n-1<t,
dk<t-n+4,

kst_—n+1.
4

Therefore, diam  (C?)=k =1+ r—TnJ , ("K is positive integer). #

Theorem 3.2: For any n >3, the n-Hosoya polynomial of C? , t>6 is given by:
t-1) %o |(t-4k+3) (t-4k-1
H,(CZx) =t + )t - x¥+C,_(C?,8 )x*,
N bt 15 [ N [
Where, C,(C?,8,) is determined in Remark 3.3, and &, is determined by Lemma 3.1.

Proof: Let S be a set of (n-1) vertices of V(C?) such that v, ¢S, v, e V(C?) and
d,(v,S)=k , 2<k<§,—-1. Hence , S does not contain any vertex from
Vo o Ve ga Ve, VL, Vo, Vs, Vo, L}, (See Fig. 3.1) , but S must contain , at least ,
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one vertex of {V,,Vy1 Vi seseViaei}. Then, the number of vertices in C? of

distance more than k from v, is (t—4k—1) and there are four vertices in C? of
distance k from v,. Hence, by Lemma 1.1,

t—4k +3 t—4k -1
C.(v,,C? k)= I ,for 2<k<§, 1.
n 1 t n—l 1 n

Moreover, it is clear that

C, (v, C21) = (:}‘_ﬂ - G__ij .

Since C,(v,,C?,k)=C, (v;,C?,k) , 2<i<t, then

) t—4k +3 t—4k -1
C,(Ci k)=t - ,for1<k<g, -1. #
n-1 n-1

Remark 3.3: From Fig. 3-2 , we can easily obtain C_(C?,5,), for n>3.

1. If t=4m+3, then,
t :n=3

cn(cf-,an)zt t—45 +3) (t-45 -1 4
n-1 n-1 .

2. Ift=4m+2 , 4m+1, then,

, t—45 +3) (t—45 -1
C,(C{,5,) =t — “n>3.
n-1 n-1

3. If t=4m, then,

3
t 'n=3,4
n-1
t—45,+3) (t-45,-1
t - :n>5,
n-1 n-1

Corollary 3.4: The n-Wiener index of C? is given by:

C,(C:35,) =

bn

W, (C?)=>"kC,(C? k), where C, (C? k) , 1<k<§, is given in Theorem 3.2 and
k=1

Remark 3.3. #
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