The n-Hosoya Polynomials of the Square of a Path and of a Cycle

Ahmed M. Ali

ahmedgraph@uomousl.edu.iq

Department of Mathematics College of Computer Science and Mathematics University of Mosul, Mosul, Iraq

Received on: 02/06/2013 Accepted on: 16/09/2013

ABSTRACT

The n-Hosoya polynomial of a connected graph G of order t is defined by: $H_n(G;x) = \sum_{k=0}^{\delta_n} C_n(G,k) x^k \text{, Where, } C_n(G,k) \text{ is the number of pairs (v,S), in which } |S| = n-1, \quad 3 \le n \le t \text{,} \quad v \in V(G) \text{,} \quad S \subseteq V(G) \text{, such that } d_n(v,S) = k \text{, for each } 0 \le k \le \delta_n = diam_n(G) \text{.}$

In this paper, we find the n-Hosoya polynomial of the square of a path and of the square of a cycle. Also, the n-diameter and n-Wiener index of each of the two graphs are determined.

Keyword: n-diameter, n-Hosoya polynomial, n-Wiener index, path square and cycle square.

متعددات حدود هوسوبا -n لمربعى الدرب والدارة

أحمد محد علي

قسم الرياضيات، كلية علوم الحاسوب والرياضيات جامعة الموصل، الموصل، العراق

تاريخ قبول البحث: 2013/09/16

تاريخ استلام البحث: 2013/06/02

الملخص

 $^{\circ}$ تعرف متعددة حدود هوسويا $^{\circ}$ لبيان متصل $^{\circ}$ من الرتبة $^{\circ}$ على أنها: $^{\circ}$ البيان $^{\circ}$ من $^{\circ}$ البيان متصل $^{\circ}$ من $^{\circ}$ من $^{\circ}$ البيان متصل $^{\circ}$ من $^{\circ}$ البيان متصل $^{\circ}$ من $^{\circ}$ البيان متصل $^{\circ}$ عدد الأزواج $^{\circ}$ ($^{\circ}$ ($^{\circ}$) والتي لكل منها المسافة الصغرى بين الرأس $^{\circ}$ يمثل عدد الأزواج $^{\circ}$ عدد الأزواج $^{\circ}$ ($^{\circ}$) هي $^{\circ}$ البي أن $^{\circ}$ المحموعة $^{\circ}$ من $^{\circ}$ المحموعة $^{\circ}$ من $^{\circ}$ المحموعة $^{\circ}$ المحموعة $^{\circ}$ من $^{\circ}$ المحموعة $^{\circ}$

في هذا البحث تم إيجاد متعددة حدود هوسويا-n لكل من مربع الدرب ومربع الدارة، وكذلك تم تحديد القطر n ودليل وينر-n لكل منهما.

الكلمات المفتاحية: القطر -n ، متعددات حدود هوسويا - n، دليل وينر - n ،مربع الدرب ، مربع الدارة.

1. Introduction:

The **n-distance** [1] in a connected graph G=(V,E) of order t is the minimum distance from a singleton , $v \in V$ to an (n-1)-subset S , $S \subseteq V$, $3 \le n \le t$, that is ,

$$d_n(v,S) = \min \{d(v,u): u \in S\}, 3 \le n \le t.$$

It is clear that

 $d_n(v,S) = 0$; when $v \in S$,

$$d_n(v,S) \ge 1$$
; when $v \notin S$.

The <u>n-Wiener index</u> of a connected graph G = (V, E) is the sum of the minimum distances of all pairs (v,S) in the graph G, that is:

$$W_n(G) = \sum_{\substack{(v,S),|S|=n-1\\v\in V \ S=V}} d_n(v,S) , 3 \le n \le t.$$

The <u>n-diameter of</u> G is defined by:

$$diam_n G = max\{d_n(v,S): v \in V(G), |S| = n-1, S \subseteq V(G)\}.$$

Now, let $C_n(G,k)$ be the number of pairs (v,S), |S|=n-1, $3 \le n \le t$, $v \in V$, $S \subseteq V$, such that $d_n(v,S)=k$, for each $0 \le k \le \delta_n = diam_n(G)$, then the <u>n-Hosoya polynomial of G</u> is defined by:

$$H_n(G;x) = \sum_{k=0}^{\delta_n} C_n(G,k) x^k.$$

We can obtain the n-Wiener index of G from the n-Hosoya polynomial of G as follows:

$$W_n(G) = \frac{d}{dx} H_n(G;x)|_{x=1} = \sum_{k=1}^{\delta_n} k C_n(G,k).$$

For a vertex v of a connected graph G, let C_n (v,G,k) be the number of (n-1)-subsets S of vertices of G such that d_n (v,S)=k, for $n\geq 3$, $0\leq k\leq \delta_n$. The $\underline{n\text{-Hosoya}}$ polynomial of the vertex v, denoted by $H_n(v,G;x)$, is defined as:

$$H_n(v,G;x) = \sum_{k\geq 0} C_n(v,G,k)x^k$$
.

It is clear that for all $k \ge 0$,

$$\sum_{\mathbf{v}\in\mathbf{V}(\mathbf{G})} \mathbf{C}_{\mathbf{n}}(\mathbf{v},\mathbf{G},\mathbf{k}) = \mathbf{C}_{\mathbf{n}}(\mathbf{G},\mathbf{k}),$$

and

$$\sum_{v \in V(G)} H_n(v,G;x) = H_n(G;x).$$

For more information about these concepts, see the References [1, 2, 5, 6].

The next lemma will be used in proving our results.

Lemma 1.1:[1] Let v be any vertex of a connected graph G. If there are r vertices of distance $k \ge 1$ from v, and there are s vertices of distance more than k from v, then, for $n \ge 3$,

$$C_n(v,G,k) = {r+s \choose n-1} - {s \choose n-1}.$$
 ...(1.1)

Definition 1.2: Let G be a connected non-trivial graph . The square G^2 of the graph G, introduced by Harary and Ross [7], has $V(G^2) = V(G)$ with u, v adjacent in G^2 , whenever $1 \le d_G(u, v) \le 2$.

Notice that the square of complete graph, star graph, wheel graph, complete bipartite graph are complete graphs.

In [1,2,3,4], the n-Hosoya polynomials for many special graphs and many compound graphs are obtained. In this paper, we continue such works by obtaining the n-Hosoya polynomials of the square of paths and cycles.

2. The n-Hosoya Polynomial of the Square of a Path:

In this section , we obtained the n-Hosoya polynomial of the square $\ P_t^2$ of a path P_t of order t. We shall consider two main cases of $\ P_t^2$ according to the parity of t.

First Case: Even t, t = 2r, $r \ge 2$.

Let $P_t: u_1, u_2, u_3, ..., u_t$, then P_t^2 is shown in Fig.2.1, and by relabeling its vertices, we have Fig. 2.2 for P_{2r}^2 .

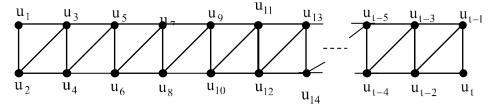


Fig. (2.1). The Path Square P_t^2

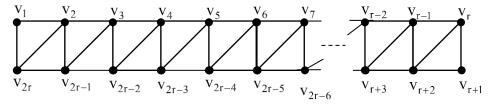


Fig. (2.2). The Path Square P_{2r}^2

Second Case: If **t is odd**, then there exists an integer r such that t = 2r + 1. The graph P_t^2 is shown in Fig.2-3.

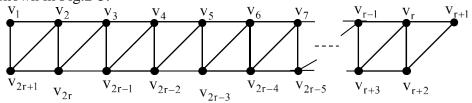


Fig. (2.3). The Path Square P_{2r+1}^2 .

Theorem 2.1: For $t \ge 5$ and $n \ge 2$, let $r = \left\lfloor \frac{t}{2} \right\rfloor$, then,

$$diam_{n}(P_{t}^{2}) = \begin{cases} r+1-\left\lceil\frac{n}{2}\right\rceil & , \text{ for even } t \ , \\ \\ r+1-\left\lfloor\frac{n}{2}\right\rfloor & , \text{ for odd } t \ . \end{cases}$$

Proof:

(1). Let t be even, then t = 2r.

From Fig.2.2 , we notice that $\text{diam}(P_{2r}^2) = d(v_1,v_{r+1}) = r$, then $\text{diam}_n(P_{2r}^2) = d_n(v_1,S)$, $n \geq 2$, where S consists of the first n-1 vertices from the sequence $\{v_{r+1}\,;v_r\,,v_{r+2}\,;v_{r-1}\,,v_{r+3}\,;v_{r-2}\,,v_{r+4}\,;\,\ldots\,;v_2\,,v_{2r}\,\}$.

Thus, if n is even, then

$$S = \{v_{r+1}\}, n = 2,$$

$$S = \{v_{r+1}, v_r, v_{r+2}; v_{r-1}, v_{r+3}; v_{r-2}, v_{r+4}; \dots; v_{r+2-\frac{n}{2}}, v_{r+\frac{n}{2}}\}, n = 4, 6, 8, \dots, 2r.$$

So,
$$d_n(v_1, S) = r + 1 - \frac{n}{2}$$
.

If n is odd, then

$$S = \{v_{r+1}, v_r; v_{r+2}, v_{r-1}; v_{r+3}; v_{r-2}; \dots; v_{r+\frac{n-1}{2}}, v_{r+1-\frac{n-1}{2}}\}, n = 3, 5, 7, \dots, 2r - 1.$$

So,
$$d_n(v_1, S) = r + 1 - \frac{n+1}{2}$$

Therefore, diam_n(P_{2r}^2) = $r + 1 - \left\lceil \frac{n}{2} \right\rceil$, for all $n \ge 2$.

(2). Let t be odd, then t = 2r + 1.

Thus, if n is odd, then,

$$S = \{v_{r+l} \ , v_{r+2} \ ; v_r \ , v_{r+3} \ ; v_{r-l} \ , v_{r+4} \ ; \ ... \ ; v_{r+2-\frac{n-l}{2}} \ , v_{r+l+\frac{n-l}{2}} \} \ , \ n = 3, 5, 7, \ ... \ , 2r+1 \ ... \ ,$$

So,
$$d_n(v_1, S) = d(v_1, v_{r+2-\frac{n-1}{2}}) = r + 1 - \frac{n-1}{2}$$
.

If n is even, then,

$$S = \{v_{r+1}, v_{r+2}; v_r, v_{r+3}; v_{r-1}, v_{r+4}; \dots; v_{r+2-\frac{n}{2}}, v_{r+1+\frac{n}{2}}\}, n = 4, 6, 8, \dots, 2r.$$

So,
$$d_n(v_1,S) = d(v_1, v_{r+2-\frac{n}{2}}) = r+1-\frac{n}{2}$$
.

Therefore,

$$\operatorname{diam}_{n}(P_{2r+1}^{2}) = r + 1 - \left\lfloor \frac{n}{2} \right\rfloor$$
, for all $n \ge 2$. #

Remark : Throughout this work , we assume that $\binom{a}{b} = 0$, if a < b .

Theorem 2.2: For any $n \ge 3$, the n-Hosoya polynomial of P_t^2 , $t \ge 6$, is given by:

$$H_n(P_t^2;x) = \sum_{k=0}^{\delta_n} C_n(P_t^2,k) x^k ,$$

Where, $\delta_n = \text{diam}_n(P_t^2)$,

$$C_n(P_t^2,0) = t \binom{t-1}{n-2}$$
, ...(2.2.1)

$$C_{n}(P_{t}^{2},1) = t \binom{t-1}{n-1} - 2 \left\lceil \binom{t-3}{n-1} + \binom{t-4}{n-1} \right\rceil - (t-4) \binom{t-5}{n-1}, \qquad \dots (2.2.2)$$

$$C_{n}(P_{t}^{2},k) = 2 \left[{t-2k \choose n-1} + {t-2k+1 \choose n-1} \right] + (t-4k+2) {t-4k+3 \choose n-1}$$

$$-2\sum_{i=0}^{2} {t-4k+i \choose n-1} - (t-4k) {t-4k-1 \choose n-1}, \ 2 \le k \le \left\lfloor \frac{\delta_n}{2} \right\rfloor, \qquad \dots (2.2.3)$$

$$C_{n}(P_{t}^{2},k) = 2 \left[\begin{pmatrix} t - 2k \\ n - 1 \end{pmatrix} + \begin{pmatrix} t - 2k + 1 \\ n - 1 \end{pmatrix} \right], \left\lfloor \frac{\delta_{n}}{2} \right\rfloor + 1 \le k \le \delta_{n}. \qquad \dots (2.2.4)$$

Proof: It is clear that $C_n(P_t^2,0) = t \binom{t-1}{n-2}$.

From Fig.2.2, we notice that in P_t^2 , there are two vertices of degree 2, two vertices of degree 3, and t-4 vertices of degree 4. Thus, using formula (1.4.5) in [1], we obtain (2.2.2).

For each vertex w and given k, let

$$S_1(w,k) = \{v \in V: d(w,v) = k\},\$$

$$S_2(w,k) = \{v \in V : d(w,v) > k\}.$$

<u>First</u>, we shall prove (2.2.3) and (2.2.4) for <u>even t</u>, assuming t = 2r, $r \ge 4$. It is clear, from Fig. 2.2, that for $n \ge 3$,

$$C_n(v_i, P_t^2, k) = C_n(v_{i+r}, P_t^2, k),$$
 ...(2.2.5)

for i = 1, 2, ..., r. Therefore, for $2 \le k \le \delta_n$,

$$C_n(P_{2r}^2, k) = 2\sum_{i=1}^r C_n(v_i, P_{2r}^2, k)$$
. ...(2.2.6)

Now, let $2 \le k \le \left| \frac{\delta_n}{2} \right|$, in which δ_n is determined by Theorem 2.1, that is

$$\delta_{n} = r + 1 - \left\lceil \frac{n}{2} \right\rceil.$$

Since, $n \ge 3$, then $\delta_n \le r - 1$, for $r \ge 4$.

But, in proving (2.2.3), we assume that $\delta_n \ge 4$.

According to the given value of k, we partition $\{v_1, v_2, ..., v_r\}$ into the following **four** cases:

(1). For i = 1, 2, ..., k, we notice, from Fig. 2.2, that:

$$S_1(v_i,k) = \{v_{i+k}, v_{2r+2-i-k}\},\$$

$$S_2(v_i,k) = V(P_{2r}^2) - \{v_1, v_2, \dots, v_{i+k}, v_{2r+2-i-k}, v_{2r+3-i-k}, \dots, v_{2r}\}.$$

Thus,

$$|S_1(v_i,k)| = 2$$
, $|S_2(v_i,k)| = t+1-2k-2i$.

So, by Lemma 1.1, we have, for i = 1, 2, ..., k,

$$C_{n}(v_{i}, P_{t}^{2}, k) = {t+3-2k-2i \choose n-1} - {t+1-2k-2i \choose n-1}.$$
 ...(c1)

(2). For i = 1, 2, ..., k-1, we obtain, from Fig. 2.2,

$$S_1(v_{r+1-i}, k) = \{v_{r-k-i+1}, v_{r+k+i}\},\$$

$$S_2(v_{r+l-i},k) = V(P_t^2) - \{v_{r-k-i+l}, v_{r-k-i+2}, \ \dots \ , v_r, v_{r+l}, \ \dots \ , v_{r+k+i}\}.$$

Thus

$$|S_1(v_{r+1-i},k)| = 2$$
, $|S_2(v_{r+1-i},k)| = t - 2k - 2i$.

So, using Lemma 1.1, we obtain, for i = 1, 2, ..., k-1,

$$C_{n}(v_{r+1-i}, P_{t}^{2}, k) = {t+2-2k-2i \choose n-1} - {t-2k-2i \choose n-1}.$$
 ...(c2)

(3). For v_{r-k+1} , we have

$$S_1(v_{r-k+1},k) = \{v_{r+1}, v_{2k+r}, v_{r+1-2k}\},$$

$$S_2(v_{r-k+1},k) = V(P_t^2) - \{v_{r-2k+1}, v_{r-2k+2}, \dots, v_r, v_{r+1}, \dots, v_{r+2k}\}.$$

Thus

$$|S_1(v_{r-k+1},k)| = 3$$
, $|S_2(v_{r-k+1},k)| = t - 4k$.

So, using Lemma 1.1, we get,

$$C_{n}(v_{r-k+1}, P_{t}^{2}, k) = {t+3-4k \choose n-1} - {t-4k \choose n-1}.$$
 ...(c3)

(4). For i = k + 1, k + 2, ..., r - k

$$S_1(v_i,k) = \{v_{i-k}, v_{i+k}, v_{2r+k-i+1}, v_{2r-k-i+2}\},\$$

$$S_2(v_i,k) = V(P_t^2) - \{v_{i-k},v_{i-k+1}, \ldots, v_{i+k},v_{2r-k-i+2},v_{2r-k-i+3},\ldots,v_{2r+k-i+1}\}.$$

Thus,

$$|S_1(v_i,k)| = 4$$
, $|S_2(v_i,k)| = t - 4k - 1$.

Therefore, using Lemma 1.1, we get, for i = k + 1, k + 2, ..., r - k,

$$C_n(v_i, P_t^2, k) = {t - 4k + 3 \choose n - 1} - {t - 4k - 1 \choose n - 1}.$$
 ...(c4)

Thus, from (2.2.6) and summing up the formulas (c1)-(c4) we get for $2 \le k \le \left\lfloor \frac{\delta_n}{2} \right\rfloor$,

$$\begin{split} C_n(P_t^2,k) &= 2 \Biggl\{ \sum_{i=1}^k \Biggl[\binom{t+3-2k-2i}{n-1} - \binom{t+1-2k-2i}{n-1} \Biggr] \\ &+ \sum_{i=1}^{k-l} \Biggl[\binom{t+2-2k-2i}{n-1} - \binom{t-2k-2i}{n-1} \Biggr] \\ &+ \binom{t-4k+3}{n-1} - \binom{t-4k}{n-1} + (r-2k) \Biggl[\binom{t-4k+3}{n-1} - \binom{t-4k-1}{n-1} \Biggr] \Biggr\} \,. \end{split}$$

$$&= 2 \Biggl\{ \Biggl[\binom{t-2k+1}{n-1} - \binom{t-4k+1}{n-1} \Biggr] + \Biggl[\binom{t-2k}{n-1} - \binom{t-4k+2}{n-1} \Biggr] \\ &+ \binom{t-4k+3}{n-1} - \binom{t-4k}{n-1} + (r-2k) \Biggl[\binom{t-4k+3}{n-1} - \binom{t-4k-1}{n-1} \Biggr] \Biggr\} \,. \end{split}$$

$$&= 2 \Biggl[\binom{t-2k}{n-1} + \binom{t-2k+1}{n-1} \Biggr] + (t-4k+2) \binom{t-4k+3}{n-1} \\ &= 2 \Biggl[\binom{t-2k}{n-1} + \binom{t-2k+1}{n-1} \Biggr] + (t-4k+2) \binom{t-4k+3}{n-1} \\ &- 2 \sum_{j=0}^2 \binom{t-4k+j}{n-1} - (t-4k) \binom{t-4k-1}{n-1} \,. \end{split}$$

Now, we give the proof of (2.2.4) for $\left| \frac{\delta_n}{2} \right| + 1 \le k \le \delta_n$. Here, we have <u>two cases</u>:

(a). For
$$i = 1, 2, ..., r - k$$
,

$$S_1(v_i, k) = \{v_{i+k}, v_{2r+2-i-k}\}$$
,

$$S_2(v_{_{i}},k) = V(P_{_{t}}^2) - \{v_{_{1}},v_{_{2}}, \; ... \;\; , v_{_{i+k}}, v_{_{2r+2-i-k}}, v_{_{2r+3-i-k}}, \; ... \;\; , v_{_{2r}}\}.$$

Thus,

$$|S_1(v_i,k)| = 2$$
, $|S_2(v_i,k)| = t + 1 - 2k - 2i$.

So, by Lemma 1.1, we have, for i = 1, 2, ..., r - k,

$$C_{n}(v_{i}, P_{t}^{2}, k) = {t - 2k - 2i + 3 \choose n - 1} - {t - 2k - 2i + 1 \choose n - 1}.$$
 ...(d1)

(b). For v_{r+1-i} , i = 1, 2, ..., r-k, we have

$$S_1(v_{r+1-i},k) = \{v_{r-k-i+1}, v_{r+k+i}\},$$

$$S_2(v_{r+l-i},k) = V(P_t^2) - \{v_{r-k-i+l}, v_{r-k-i+2}, \dots, v_r, v_{r+l}, \dots, v_{r+k+i}\}.$$

Thus.

$$\left| S_1(v_{r+1-i}, k) \right| = 2$$
, $\left| S_2(v_{r+1-i}, k) \right| = t - 2k - 2i$.

So, by Lemma 1.1, we have , for i = 1, 2, ..., r - k,

$$C_{n}(v_{r+1-i}, P_{t}^{2}, k) = {t-2k-2i+2 \choose n-1} - {t-2k-2i \choose n-1}.$$
 ...(d2)

Therefore, using (2.2.6) and summing up (d1) and (d2), we get for $\left|\frac{\delta_n}{2}\right| + 1 \le k \le \delta_n$,

$$\begin{split} &C_n(P_t^2,k) = 2 \Biggl\{ \sum_{i=1}^{r-k} \Biggl[\binom{t-2k-2i+3}{n-1} - \binom{t-2k-2i+1}{n-1} \Biggr] \\ &+ \sum_{i=1}^{r-k} \Biggl[\binom{t-2k-2i+2}{n-1} - \binom{t-2k-2i}{n-1} \Biggr] \Biggr\} \\ &= 2 \Biggl\{ \Biggl[\binom{t-2k+1}{n-1} - \binom{t-2r+1}{n-1} \Biggr] + \Biggl[\binom{t-2k}{n-1} - \binom{t-2r}{n-1} \Biggr] \Biggr\} \\ &= 2 \Biggl[\binom{t-2k+1}{n-1} + \binom{t-2k}{n-1} \Biggr], \text{ because } n \geq 3 \,. \end{split}$$

<u>Second</u>, the proofs of (2.2.3) and (2.2.4) for **odd t**, t = 2r + 1, $r \ge 3$, are similar to the proofs of (2.2.3) and (2.2.4) for even t.

Hence, the proof of the Theorem is completed.

Corollary 2.3: The n-Wiener index of P_t^2 is given by:

$$W_{n}(P_{t}^{2}) = t \binom{t-1}{n-1} - 2 \left\lceil \binom{t-3}{n-1} + \binom{t-4}{n-1} \right\rceil - (t-4) \binom{t-5}{n-1} + \sum_{k=2}^{\delta_{n}} kC_{n}(P_{t}^{2}, k) ,$$

in which

$$\begin{split} C_{_{n}}(P_{_{t}}^{2},k) &= 2 \Biggl[\binom{t-2k}{n-1} + \binom{t-2k+1}{n-1}\Biggr] + (t-4m+2) \binom{t-4k+3}{n-1} \\ &- 2 \sum_{i=0}^{2} \binom{t-4k+i}{n-1} - (t-4k) \binom{t-4k-1}{n-1}, \ 2 \leq k \leq \left\lfloor \frac{\delta_{_{n}}}{2} \right\rfloor, \\ C_{_{n}}(P_{_{t}}^{2},k) &= 2 \Biggl[\binom{t-2k}{n-1} + \binom{t-2k+1}{n-1}\Biggr] \ , \left\lfloor \frac{\delta_{_{n}}}{2} \right\rfloor + 1 \leq k \leq \delta_{_{n}} \ . \quad \# \end{split}$$

3. The n-Hosoya Polynomial of the Square of a Cycle:

There are many classes of connected graphs G in which for each k, $1 \le k \le \delta_n$, C_n (v,G,k) is the same for every vertex $v \in V(G)$; such graphs are called [2] **vertex-n-distance regular graphs**, and for the given value of n, $2 \le n \le t$,

 $H_n(G;x) = t H_n(v,G;x)$, where v is any vertex of G and t is the order of G.

The graph C_t^2 is the square of a cycle of order t, shown in Fig. 3.1. We shall find the n-diameter, n-Hosoya polynomial, and n-Wiener index of C_t^2 .

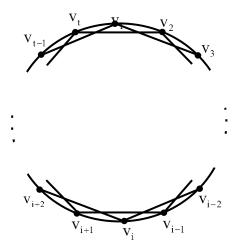


Fig. (3.1) The Cycle Square C_t^2 , $t \ge 6$.

Lemma 3.1: diam_n(
$$C_t^2$$
) = $\delta_n = 1 + \left| \frac{t-n}{4} \right|$, $n \ge 2$, $t \ge 6$.

Proof: Let
$$m = \left\lfloor \frac{t}{4} \right\rfloor$$
, then $t = 4m + r$, $r = 0,1,2,3$.

For r = 2, C_t^2 is redrawn in Fig. 3.2.

Since, C_t^2 is vertex n-distance regular graph , then $diam_n(C_t^2) = e_n(v_1)$.

To find the n-eccentricity of V_1 , we partition $V(C_t^2) - \{v_1\}$ into S_1, S_2, \dots, S_{m+1} , where

$$S_1 = \{v_2, v_3, v_t, v_{t-1}\},\$$

$$S_2 = \{v_4, v_5, v_{t-2}, v_{t-3}\},\$$

$$S_3 = \{v_6, v_7, v_{t-4}, v_{t-5}\},\$$

.

$$S_{j} = \{v_{2j}, v_{2j+1}, v_{t-2(j-1)}, v_{t-2j+1}\},$$

.

$$\mathbf{S}_{\mathrm{m}} = \{ \mathbf{v}_{\mathrm{2m}} , \mathbf{v}_{\mathrm{2m+1}} , \mathbf{v}_{\mathrm{t-2m+2}} , \mathbf{v}_{\mathrm{t-2m+1}} \},$$

$$S_{m+1} = V(C_t^2) - (\bigcup_{i=1}^m S_j \bigcup \{v_i\})$$
.

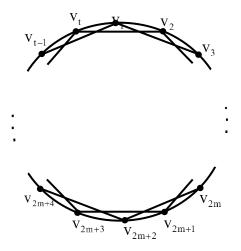


Fig. (3.2). The Cycle Square C_t^2 , t = 4m + 2, $m \ge 1$.

It is clear that each vertex of S_j , $1 \le j \le m$, is of (standard) distance j from v_1 ; and each of the other vertices (if exists) of C_t^2 (here in Fig. 3.2, we have $\{v_{\frac{t}{2}+1}\} = \{v_{2m+2}\} = S_{m+1}$) is of the distance m+1 from v_1 . Notice that if t = 4m+1,

then S_{m+1} is empty, and if t=4m then, S_{m+1} is empty and S_m consists of three elements; if t=4m+2, t=4m+3, then S_{m+1} consists of one, respectively two, elements.

Let k be the greatest positive integer such that the set $\bigcup_{i=k}^{m+1} S_i$ consists of at least (n-1) vertices. Therefore, since $\left|S_i\right| \leq 4$. $4(k-1)+1+(n-1)\leq t$,

 $4k \le t - n + 4$,

$$k \le \frac{t-n}{4} + 1.$$

Therefore, diam_n $(C_t^2) = k = 1 + \left\lfloor \frac{t - n}{4} \right\rfloor$, (:k is positive integer). #

Theorem 3.2: For any $n \ge 3$, the n-Hosoya polynomial of C_t^2 , $t \ge 6$ is given by:

$$H_{n}(C_{t}^{2};x) = t \binom{t-1}{n-2} + \sum_{k=1}^{\delta_{n}-1} t \left[\binom{t-4k+3}{n-1} - \binom{t-4k-1}{n-1} \right] x^{k} + C_{n}(C_{t}^{2},\delta_{n}) x^{\delta_{n}},$$

Where , $C_n(C_t^2, \delta_n)$ is determined in Remark 3.3, and δ_n is determined by Lemma 3.1.

 one vertex of $\{v_{2k}, v_{2k+1}, v_{t-2k+2}, v_{t-2k+1}\}$. Then, the number of vertices in C_t^2 of distance more than k from v_1 is (t-4k-1) and there are four vertices in C_t^2 of distance k from v_1 . Hence, by Lemma 1.1,

$$C_n(v_1, C_t^2, k) = {t-4k+3 \choose n-1} - {t-4k-1 \choose n-1}$$
, for $2 \le k \le \delta_n - 1$.

Moreover, it is clear that

$$C_n(v_1, C_t^2, 1) == {t-1 \choose n-1} - {t-5 \choose n-1}.$$

Since $C_n(v_1, C_t^2, k) = C_n(v_1, C_t^2, k)$, $2 \le i \le t$, then

$$C_n(C_t^2, k) = t \begin{bmatrix} t - 4k + 3 \\ n - 1 \end{bmatrix} - t \begin{bmatrix} t - 4k - 1 \\ n - 1 \end{bmatrix}, \text{ for } 1 \le k \le \delta_n - 1.$$

Remark 3.3: From Fig. 3-2 , we can easily obtain $\,C_{_n}(C_{_t}^2,\delta_{_n})$, for $\,n\geq 3$.

1. If t = 4m + 3, then,

$$C_{n}(C_{t}^{2}, \delta_{n}) = \begin{cases} t & ; n = 3 \\ t \left[\left(t - 4\delta_{n} + 3 \right) - \left(t - 4\delta_{n} - 1 \right) \right] & ; n \ge 4. \end{cases}$$

2. If t = 4m + 2, 4m + 1, then,

$$C_{n}(C_{t}^{2},\delta_{n}) = t \begin{bmatrix} \left(t - 4\delta_{n} + 3\right) - \left(t - 4\delta_{n} - 1\right) \\ n - 1 \end{bmatrix}; n \ge 3.$$

3. If t = 4m, then,

$$C_{n}(C_{t}^{2}, \delta_{n}) = \begin{cases} t \binom{3}{n-1} ; n = 3, 4 \\ t \binom{t-4\delta_{n}+3}{n-1} - \binom{t-4\delta_{n}-1}{n-1} \end{cases} ; n \ge 5.$$

Corollary 3.4: The n-Wiener index of C_t^2 is given by:

$$W_n(C_t^2) = \sum_{k=1}^{\delta_n} k \, C_n(C_t^2, k), \text{ where } C_n(C_t^2, k) \text{ , } 1 \leq k \leq \delta_n \text{ is given in Theorem 3.2 and }$$
 Remark 3.3 . #

REFERENCES

- [1] Ahmed, H.G. (2007), "On Wiener Polynomials of n-Distance in Graphs", M.Sc. Thesis, University of Dohuk, Dohuk, Iraq.
- [2] Ali, A.A. and Ali, A.M.; (2006), "Wiener Polynomials of the Generalized Distance for some Special Graphs", Raf. J. Comp. Sc. And Maths. Vol.3, No.2, pp.103-120.
- [3] Ali, A.A. and Ali, A.M.; (2010), "The n-Hosoya Polynomials of some Classes of Thorn Graphs", Raf. J. Comp. Sc. And Maths. Vol.7, No.1, pp.81-97.
- [4] Ali, A.A. and Ahmed, H.G.; (2012), "The n-Hosoya Polynomial of $W_{\alpha} \boxtimes C_{\beta}$ ", Raf. J. Comp. Sc. and Maths. Vol.9, No.2, pp.139-150.
- [5] Buckley, F. and Harary, F.; (1990), **Distance in Graphs**. Addison -Wesley, Redwood, California.
- [6] Diestel, R; (2000), **Graphs Theory**, electronic ed., Springer-Verlag, New York.
- [7] Harary, F. and Ross, I.C.; (1960), "The square of a tree", Bell Syst. Tech. J., 39, p. 641-647.