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ABSTRACT

In this paper we have investigated a new initial parameter,
the new parameter is to make balance between interior suitable
for inequality constrained exterior method (suitable for equality
and inequality constrained) for non-linear constrained
optimization. The new algorithm is programmed to solve some
standard problems in non-linear optimization method. The results
are too effective when compared with Barriar —Penalty
algorithm.

Keyword: constrained optimization, penalty method, Barrier
method.
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Oalall Al cehall dayh kel LY :dalidal) bl
1.Introduction:

We shall first state the most general from of the problem we are
addressing, namely

Minimize f(x), xeR" (1)
Subject to the general (possibly nonlinear) inequality constraints
c;(x)<0 1<j<L (2)
and (possibly nonlinear) equality constraints
c;(x)=0 L+1<j<m (3)

with the simple bounds
L <x <u;, 1<i<n 4)

Where f and c; are all assumed to be twice continuously
differentiable and defined on E,, x is a subset of E,, and x is a
vector of n components, X1,X, ...,Xn.

The above problem must be solved for the values of the
variables xi,X,,...,xn that satisfy the restrictions and meanwhile
minimize the function f. The function f is called the objective
function and any of the bounded in eq.(4) may be infinite. (See
Conn et al, 1994). The exterior-point method is suitable for
equality and inequality constraints. The new objective function
#(x, 1) 1S defined by:

B(%, 1) = £ (0 +——ax(x) (5)

Hy
Where 4, is a positive scalar and the remainder of the second

term is the penalty function.
Interior-point method is suitable for inequality constraints.
The new objective function ¢(x, «, ) is defined by

¢(x 1) = T() + 14B(X) (6)
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Where 4, is a positive scalar and the reminder of the

second term is the Barrier function. (see Gottefred, 1973).

Although both exterior and interior-point methods have
many points of similarly, they represent two different points of
view. In an exterior-point procedure, we start from an infeasible
point and gradually approach feasibility, while doing so, we
move away from the unconstrained optimum of the objective
function. In an interior-point procedure we start at a feasible
point and gradually improve our objective function, while
maintaining feasibility. The requirement that we begin at a
feasible point and remain within the interior of the feasible
inequality constrained region is the chief difficulty with interior-
point methods. In many problems we have no easy way to
determine a feasible starting point, and a separate initial
computation may be needed. Also, if equality constraints are
present, we do not have a feasible inequality constrained region
in which to maneuver freely. Thus interior-point methods cannot
handle equalities.

We may readily handle equalities by using a “mixed”
method in which we use interior-point penalty functions for
inequality constraints only. Thus, if the first m constraints are
inequalities and constraints (m+1) to n are equalities, our
problem becomes:

Minimize @(x, ) = f(x) + g(z,)B(X) +

L S0 (7)

Hy
The function #(x, ) is then minimized for a sequence of

monotonically decreasing x, >0.

2. Mixed Exterior-Interior Methods:
We can solve the constrained problem given in eq.(1) to
eq.(3) construct a new objective function ¢(x, », ) which is defined

in eg.(7). Now our aim is to minimize the function g(x, )by
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starting form a feasible point xo and with initial value x, =1 and
the method reducing g, is simple iterative method such that:

= A 8
Hiia 10 ' ( )

where g, is a constant equal to 10 and the search direction d in
this case can be defined

d, =-H,9,, (9)
where H is a positive definite symmetric approximation matrix to
the inverse Hessian matrix G and g is the gradient vector of the
function ¢(x, ) .
The next iteration is set to a further point

Xia = Xy + 4, dy (10)

where 1is a scalar chosen in such that f_, < f_, we thus test
Ci(Xk+1) to see that it is positive for all i. We find a feasible Xy+1
and we can then proceed with the interpolation. Then the matrix
Hy is updated by a correction matrix to get

Hin =H + 9, (11)
where ¢, is a correction matrix which satisfies quasi-Newton
condition namely (H,.y, = ov.)Where v, and yi are difference
vector between two successive points and gradients respectively
and p is any positive scalar.

The initial matrix Ho chosen to be identity matrix I. Hy is
updated through the formula of BFGS update. (see Bazarra et al,
2000).

Given some approximation Hy to the inverse Hessian
matrix, we compute the search direction d, =-H,g,, and we
define v, =x,,, —x,and
Y = Gk — 9k = G(Xp — %) =GV, .

We now want to construct a matrix
Hea=HO +H? (12)
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where H® is some symmetric correction matrix that ensures that
V1,Vy, ..., v are eigenvectors of Hy+1G with unit eigenvalues.
Hence

HiaYe = Vi
This condition translates to the requirement that

Hia Ve = Vi —Hy Yy
This therefore, leads to the rank-two DFP (Fletcher and Powell,
1963) update via the correction term

v,v, H TH
H, =k kTykyk K _ p OFP (13)
Vi Y Y Hi Vi
The Broyden updates suggest the use of the correction matrix
H, =H. given by
.
Hf _ HEFP n HTkTpk Py (14)
Vi Y

where p, =v, —(i)Hkykand where ¢, is chosen so that the quasi-
Tk

Newton condition holds by virtue of p;y, being zero. Then

T T T T
HkBFGS:HI?(ezl):V_II(_Vk 1+ YkTHkYk _ HkkakT+kaka (15)

and terminate the method if

X =X | <& (16)
where & =0.000001.

3. Combined Barrier-Penalty Algorithm:
Step (1): Find an initial approximation Xo in the interior of the
feasible
region for the inequality constraints i.e. gi(Xo)<O.
Step (2): Set k=1 and g, =1 is the initial value of .

Step (3): Set g(x, 1, ) = f(X)+,ukB(X)+ia(X).

Hy
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Step (4): Set dk=-Hwg«
Step (5): Set x,, =x, +4,d,, where 1 is ascalar.

Step (6): Check for convergence i.e. if eq.(16) is satisfied then
stop.
Step (7): Otherwise, set u, = f—(k) and take x=x* and set k=k+1

and go to Step 3.

4. The Initial Value of the Parameter:
The initial value p, can be important in reducing the

number of iterations and the number of function calls to
minimize ¢(x,x,), Since the unconstrained minimization of
#(x, 1) 1S to be carried out for a decreasing sequence of g, , it
might appear that by choosing a very small value of ., , we can
avoid an excessive number of minimization of the function
#(x, 1) . Also as ¢(x,u.) is close to f(x), the method should
converge more quickly. However, such a choice can cause
serious computational problems. Also if 4, is small, the function
#(x, 2, ) Will be changed rapidly in the vicinity of its minimum.
This rapid change in the function can cause difficulties for a
gradient based on methods. (see Bazaraa, 2000).
Al-Bayati and Hamed in (1997) suggested a new

parameter of the Barrier function.

Al-Assady and Hamed in (2002) proposed a new initial
parameter of Barrier-Penalty method.

5. Development of the New Algorithm:
Consider the problem stated in eq.(1) to eq.(4). The new
objective function ¢(x,x,) defined in eq.(7) with a starting

feasible point xo and with an initial value x, which is derived as

B(%,11) = £(X) + 21 B(X) + (%) (17)

Hy
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=fuw4«§%+£%mmr. (18)

Then the gradient of ¢(x, ) 1S

VO 1) =V (0~ 11, o) 2 h9h(x) (19)
e
such that
V¢(quk) =0
we have
Vi) = 11 X 12 hyvh(x) =0 (20)
e
Now, since g, >0, then we have
1, V(X)) — 11} [V( ()]) +2h(X)Vh(x) =0 (21)
Arranging eq.(21) and multiplying it by (-1), we have
2 [V(C()’;) 14, VF (X) = 2h(X)Vh(x) = 0 (22)

The optimum value of 4, is then given by one of the following
roots to eq.(22):

vE(X) T \/(Vf (x))? +8h(x)Vh(x) )
(c0))’ 23)
;umin - 2 VC(X)
(c(x))?

In the above suggestion corresponding to the assumption for
deriving a new parameter to make balance between the exterior-
interior point method, we have suggested the following new
algorithm.

6. The Outline of the New Algorithm:

Step (1): Find an initial approximation X, in the interior of the
feasible region for the inequality constraints i.e. gi(xo)<O.

Step (2): Set k=1 and g, =1 is the initial value of .
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Step (3): Find the initial value of x by using eq.(23), and
compute

P(%, 1) = F(X) + 12, B() +—ax(x).

Hy

Step (4): Set dy=-Hxg«k
Step (5): Set x,,, =x, +4,d,, where 2 is a scalar.
Step (6): Check for convergence i.e. if eq.(16) is satisfied then
stop.

Otherwise go to step 7.
Step (7): Set u,, = i’—(k)
Step (8): Set x=x* and set k=k+1 and go to step 4.

7. Results and Calculation:

In order to test the effectiveness of the new algorithm that
has been used to Barrier-Penalty function method, the
comparative tests involving several well-known test function (see
Appendix) have been chosen and solved numerically by utilizing
the new and established method. So the new algorithm has been
compared with Barriar -Penalty algorithm.

In table (1) we have compared the new algorithm with
standard  Barrier-Penalty  algorithm for 1<n<3 and
1<c;(x) < 7using (5) nonlinear test functions.

From table (2) it is clear that, taking the standard Barrier-
Penalty algorithm as 100%, and the new algorithm has 75%,
76.8%, and 81.9% improvements on the standard Barrier-Penalty
algorithm in bout number of iterations NOI and number of
function evaluations NOF.
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Table (1)
Comparison between Barrier-Penalty and new algorithms
Test Barrier-Penalty algorithm |  New algorithm
function NOI (NOF) NOI (NOF)
1. 7 (61) 2 (171
2. 8 (2141) 9 (1991
3. 7 (141) 5 (72
4. 10 (956) 5 (216)
5. 10 (2205) 9  (1955)
6. 10 (803) 9  (596)
Total 52 (6307) 39 (4847)
Table (2)
Barrier-Penalty algorithm New algorithm
NOI 100% 75
NOF 100% 76.8
8. Appendix:

Test functions:

1. min f(x) = (%, —2)* +(x, -1)*

S.t.

X, —2X, =-1

2

—X
L +x7+1>0

2. min f(x) = %X,

s.t.

25—-x2 —%x5=0

X, +X, >0

3. min f(x)=x + X

2

75

5.p(7,9)

(18,16)

5.p.(0.9,2)
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S.t.
X, +2X, =4
X, + %5 <5
X, 20

4. min f(x) = (x, - 2)? +(x, —3)?
s.t.
X, —2X, =-1
—x7+X, >0
5. min f(X) = %X, (X + X, + X3) + Xq
s.t.
X, + X2+ %, +xZ =40
X X, X5 = 25
52X 21
6. min f(x)=(x, —3)*+(x, —2)°
s.t.

2 2
X, +X; <3
X, +2X, =2
X, 20
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5.p(4,3,3,3)
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