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ABSTRACT

In this paper, a new symmetric rank one for unconstrained optimization problems is
presented. This new algorithm is used to solve symmetric and positive definite matrix. The new
method is tested numerically by (7) nonlinear test functions and method is compared with the
standard BFGS algorithm.

The new matrix used is symmetric and positive definite and it generates descent
directions and satisfied QN-like condition.
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1. Introduction:

In this section we take a numerical approach toward the development of a
numerical algorithm lying some where intermediate to the steepest descent and Newton
methods. The idea underlying quasi-Newton methods is to use an approximation to the
inverse Hessian instead of the true inverse that is required in Newton's methods.

An efficient quasi-Newton method was proposed by Davidon (1959) and many
others followed this pioneering work (see Dennis and More (1977), and Dennis and
Schnable (1983)).

The search vector is calculated according to the following equation:

d =-H,g,
where H, is in some way an approximationto G ™.

The new point x,,, is found by line searches, i.e. A, minimize f(x, +1.d,)
w.rt. 4,9,., isthen found and H, isupdateto H, , as
Hia =H +E
where E, is a matrix of rank one at most two, normally calculated from x,, X,.;, 9,
d.., and H, . The initial approximation H, can be any positive definite matrix.

We required H, , to have some of the properties of the inverse Hessian matrix.
Following the property Gv, =y, (for a quadratic function), we choose E, in such away
that
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Hia Y = Vi
which is called the quasi-Newton condition.

The matrix H,,, holds the same curvature information as G, in the direction
d, when the objective function is quadratic. In other words, the curvature information
of f along d, is given by v,G,v,, which can be approximated with first-order
information:
VIGka zV: Y
where v, =x,,; —X, = 4,d, and this relationship is exact if f is quadratic.
Let

HiaYe =V (1.1
where y, =g,,; =g, and v, =X, — X, -

Let

H,,=H, +E =H,+auu’ ...(1.2a)

where a is a constant and u a square positive definite matrix.

In which a symmetric rank one matrix E=auu’ is added in to H, . Note that
E; =auu; so that E, can be calculated by n’ +n multiplication's only. Now if the
quasi-Newton condition (1.1) is to be satisfied, it follows that:
H,y, +auu’y, =v, ...(1.2b)
Hence u is proportional to v, —H,y, . Since any change of length can be taken up in
a, u =v, —H,y, isset, in which case au’y, =1 must hold, which defines a thus the
rank one formula is given by:

.
Hk+1=Hk+(Vk_Hkyk)(Vk_THkyk) ...(1.3)
Vi =Heyi) Y

The general formula, in a slight modification of Fletcher's (1987)
Parameterization, is given by

T T
Hk+1=Hk—Hky$(Hkyk) +VkaT + oW W] (1.4
Yi Hi Vi Vie Yk

where ¢ > 0 is the free parameter and

w= Yo A .(15)
ViV Y HiYi

Much effort, both analytic and computational, has been devoted to identifying
the best quasi-Newton formula or even the best from the much wider class of variable
metric methods ontroduced by Huang (1970). The choice with the widest support is the
BFGS algorithm which was derived independently in 1970 in four different ways by
Broyden, Fletcher, Goldfarb, and Shanno. In the parameterization of (1.4), this BFGS
update formula corresponds to choosing

?=YH. Y, ...(1.6)
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2. New Symmetric Rank One Formula:

In this section we shall derive a new symmetric rank one update as follows if u
and w are column vectors, then u’ is row vector and the product u’w is a scalar.

Suppose that G, , and G, are square matrices, and u and w are vector with the

property that:
G, =G, —uw' ..(2.1)
Then the inverse of G, ,, becomes:
H.,=H, +aH uw'H, (2.2
where « is a scalar:
1

o0=—— ...(23
1-w'H,u (3)

Thus if G, has an inverse and w'H,u =1, then G, , has an inverse. See William

(1988) for more details.
Yi

T
Vi Vi

Now let u =

and w =y, are vectors then the formula (2.2) becomes:

.
H.,=H, —aHkyiin, then we have the new symmetric rank one formula as

Vi Y
follows:
.
Hk+1=Hk—aM ..(24)
Vi Yk
where
1
1- Y MY
Vi Vi

Now if G,,v, =Yy, then v, =H, Yy, it clear to prove that the new proposed
algorithm will satisfy the QN condition: from (2.2) that:
Vi =Hy = (Hk +aHku'WTHk)yk

=H,y, +aH Uuw'H,y,
=H,y, +a(wTHkyk)Hku

Ve =Hy +7Hu ...(2.6)
here ( H ) “Ho hich implies that
w =a\W =— WNni | 1es .
/4 k Yk l—WTHkU p
_ YIHkYk
}/_ T 1
(1_ YkaYk]
Ve Vi

This indicates that the new proposed symmetric matrix is a positive definite and
satisfies the QN condition.
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3. The Outlines of New Algorithm:

Step (1): Set x,, &, H;=1.

Step (2): For k=1to n,set d, =—H,Q;,.

Step (3): Compute x, ., =x, +4.d,, where 4, is optimal step size.

Step (4): Cheek if |g,.,||< & then stop, else y, =0, — 0y, Ve =Xy + X, -
1

1- yITHkyk .
Vi Yx

Step (5): a=

]
Step (6): Hy, = H, —a 1M
Ve Y

T
Step (7) dk+l =_Hk+1gk+l +ﬁkdk Where ﬂk = %;ﬂyk .

k Jk
Step (8): If k=n~+1or d; ,g,., >0, then go to step (1), else k =k +1 and go to step (3).

4. Numerical Results:

Seven test functions were tested with different dimensions 4<n<500 all
programs are written in FORTRAN 90 language and for all cases the stopping criterion
is taken to be ||g,,[ <1x107°.

The line search routine used was cubic interpolation which uses function and
gradient values and it is an adaptation of the routine published by Bundy (1984).

The results are given in the Table (1) is specifically quoting the number
functions NOF and the number of iterations NOI.

Experimental results in Table (1) confirm that the new algorithm is superior to
standard BFGS method.

In about 53% in NOI and 56% NOF.

Table (1). Comparative Performance of The Two Algorithms
functions (classical BFGS and new update method).

BFGS classical New update

Test function n NOI (NOF) NOI(NOF)
Powell 4 21(86) 19(57)
20 38(123) 19(57)
100 71(197) 22(73)
500 50(148) 22(73)
4 37(110) 40(96)
Wood 20 84(244) 47(109)
100 251(775) 51(119)
500 283(791) 48(113)
4 19(58) 16(45)
Cubic 20 35(99) 18(51)
100 70(167) 18(51)
500 53(124) 19(53)
4 34(87) 32(83)
Rosen 20 34(87) 32(83)
100 34(87) 32(83)
500 34(87) 32(83)
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4 8(26) 9(24)
Shallow 20 8(26) 9(24)
100 8(26) 9(24)
500 8(26) 9(24)
4 24(72) 28(70)
Non-diagonal 20 48(115) 39(97)
100 74(177) 39(97)
500 78(188) 40(99)
Gedger 4 6(17) 28(70)
20 6(17) 39(97)
100 6(17) 39(97)
500 6(17) 40(99)
Total 1428(3994) 671(1748)
Tools BFGS New Update
NOI 100 46.9
NOF 100 43.7

5. Appendix:
All the test function used in this paper are from general literature:

1. Generalized Powell function

4
n/ 2

f(x)= Z(Xm-s —10x,4;_, )2 + 5(X4i—1 =Xy )2 + (X4i—1 —2Xy; )
i=1
+10(X4i—9 = Xy )4 + (X4i—2 - 2X4i—1 = Xy )21
Starting point :(3,,0,1,... '

2. Generalized Wood function

n/4

f(x)= ZlOO(XM,z ~ X4i_s )2 + (1_ Xsi-s )2 + 90(X4i ~X4is )2 + (1_ Xiia )2 +1.0,
i

Starting point :(-3,-1,-3-1,...)'

3. Generalized Rosen Brock Banana function

n/2

£ = Y1000, =X, + (-, ),

Starting point :(-1.2,1,...,-1.2,1)'
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4. Generalized non diagonal function
n/2

f(x)= ZlOO(xl -x; )2 + (1— X, )2,

Starting point :(1,...,—1)"

5. Generalized Beale function
f(x)= %2“[1.5— X + (1= % JF +[2.25- %, (1= x2 ) +[2.625- %, ,0—x2 )],
i=1

Starting point :(-1,-1,...,~1,-1)"
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