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ABSTRACT 

In this paper, we describe two new algorithms which are 

modifications of the Hestens-stiefl CG-method. The first is the scaled CG-

method (obtained from function and gradient-values) which improves the 

search direction by multiplying to a scalar obtained from function value and 

its gradient at two successive points along the iterations. The second is the 

Preconditioned CG-method which uses an approximation at Hessein of the 

minimizing function. These algorithms are not sensitive to the line searches. 

Numerical experiments indicate that these new algorithms are effective and 

superior especially for increasing dimensionalities.  
Keywords: Unconstrained Optimization, Conjugate gradient algorithm, 

Hestens-stiefl method, Hessein matrix. 

 التقصي في خوارزميات التدرج المترافق الطيفي في الامثلية غير المقيدة
 صلاح غازي شريف                    خليل خضر عبو            عباس يونس البياتي   

 كلية علوم الحاسوب والرياضيات/جامعة الموصل/العراق                      
 16/08/2006تاريخ قبول البحث:     05/03/2006تاريخ استلام البحث: 

 الملخص
تم في هذا البحث اقتراح خوارزميتين جديدتين لتحسين خوارزمية المتجهات المترافقة   
(يمكن kقياسي )ب (HSCG)ضرب متجهات البحث في  الأولى تعتمد على ,(HS)لطريقة 

تم فالأولى( عند نقطتين متتابعتين اما الخوارزمية الثانية ) حصوله من قيمة الدالة وقيمة المشتقة 
ن  وهاتان الخوارزميتالمصفوفة هيسي لدالة الهدف.  اجديد اضرب متجه البحث بمصفوفة تعتبر تقريب

ة هذه العددية لبعض دوال الاختبار إلى كفاي التجارب تشيرو غير حساستين للبحث الخطي. 
 الأبعاد الكبيرة. الخوارزميات مقارنة بمثيلاتها عند

 .مصفوفة هيسي ،HSطريقة  مثلية غير المقيدة، خوارزمية التدرج المترافق،الأ الكلمات المفتاحية:
1. Introduction: 

  Unconstrained Optimization Problems expressed as: 
nRxxf );(min ………………….…………….(1) 
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Where RnRf ⎯→⎯:  is twice differentiable real valued function, is one of 

the most active areas in optimization community. virtually appearing in 

every human activity. 

 For solving these problems many efficient methods have been 

suggested. Excellent Presentations of these methods can be found, for 

example (Fletcher, 1987; Gill et-al 1981; Boyd and Vavdenberhe, 2003; 

Nocedal, 1992; Edwin 2001). The most useful algorithms classify in: The 

Conjugate gradient and its variants, Newton method and its extensions; the 

DFP variable metric method, many different QN methods. All these 

methods are iterative and consider iterations of the form: 

kkkk
dxx +=

+1
    ……………...…………….(2)  

where 
k

d is a descent direction i.e. 
 

0
k

T

k
gd      ……………...…………….(3) 

Where )(
kk

xfg =  and 
k

  is a step length obtained by line 

search.Conjugate Gradient methods consider the search directions as: 

kkkk
dgd +−=

++ 11
, 1k    ………….…………(4) 

where the scalar 
k

  is chosen in such a manner that the method reduces to 

the linear Conjugate Gradient when the function is quadratic and line search 

is exact. The rest of the methods define the search directions by: 

kkk
gGd 1−−= ,   ……………….…………………..(5) 

where kG  is a non-singular symmetric matrix. Mainly the matrix kG  is 

selected as IkG =  (identity matrix which gives the steepest descent method), 

)(2
kxfkG =  (the Newton method) or an approximation of the Hessian 

)(2
kxf . 

 Different modifications are made to the CG-algorithm in different 

ways (see for example Hu and Story, 1990; Fletcher, 1993; Al-Baali 1985), 

most of these modifications are made to the search directions to improve 

then. 

 We end this general introduction by content of this paper which is 

organized as follows: In section(2) we review the Conjugate gradient, QN-

methods and their Combinations, section(3) contains the development of the 

new algorithms, the last section includes the numerical results. 
 

2. Review of the methods: 

2-1 Conjugate Gradient Methods:  
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 Non-linear Conjugate gradient (CG) is one of the most useful and 

the earlist techniques for solving Large-scale non-linear optimization 

problems. 

 Many variants of this original scheme have been proposed, and some 

are widely used in practice, CG-methods only use the first order derivatives 

information of the objective function and need not update the Hessian 

matrix at each iteration. First, these are used to solve the general 

unconstrained optimization problems by Fletcher and Reeves (1964). 

 Conjugate gradient methods depend on the fact that for quadratic,  if 

we search along a set of n mutually conjugate directions nkkd ,...,2,1, =  (by 

Conjugate directions we mean that 0=jGdT
id , ji  , where G is nn  

positive matrix), then we will find the minimum in at most  n-steps if line 

searches are exacts i.e. 

0
1
=

+k

T

k
gd      …………………….………..(6) 

Moreover, if we generate this set of directions by known gradients then each 

direction can be simply expressed as: 

 
11

gd −=  

kkkk
dgd +−=

++ 11
 , 1k        ....…………….........……….(7) 

Where     

kyT
kd

kyT
kg

k
1+=                 ………….…….….......…….(8) 

And   

kkk
ggy −=

+1
       …...….…….………………(9) 

            
k

  given in equation (8) is called the Hestenes-stifel formula; 

clearly there are other different forms of   
k

  such as Polak-Ribeier formula 

which is derived from  
k

  in equation (8) as follows: 

                              

kgT
kdkgT

kd

kgT
kgkgT

kg

kgkgT
kd

kgkgT
kg

kyT
kd

kyT
kg

−+

+−++=
−+

−++=+

1

111

)1(

)1(11  

Assuming equation (6) and considering : 

                                                            
11 −−

+−=
kkkk

dgd    

(see Edwin 2001) we get  
k

T

kk

T

k
gggd −=  

Hence  PR
kgT

kg

kyT
kg

kyT
kd

kyT
kg

=+=+ 11          …………………....…(10) 
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 The Fletcher Reeves formula can be derived from 
PR

  by 

considering 0
1

=
+ k

T

k
gg  to obtain  

kgT
kg

kgT
kg

FR
11 ++=      …………….....(11), 

and there are many other forms. All these k  are equivalent on quadratics 

with exact line searches and starting with steepest descent direction, but 

when extended to general non-linear functions, the conjugate gradient 

algorithms with different 
k

  are quite different in effacing and are 

considered to be not so efficient as the QN algorithms in general. The focus 

in this paper to the 
k

  given in equation (8) since its original CG-method. 

 Finally, in many implementations of Conjugate gradient methods, 

The iteration (7) is restarted every n or (n+1) steps setting 
k

  equal to zero 

i.e. taking steepest descent step. This ensures global convergence (Nocedal, 

1992). However, different restarts are introduced (see Fletcher, 1987). One 

of the well-known restarts  given by Powell(Powell 1977) is: 
2

2.01 kgkgT
kg +            ……………………….(12) 

 This criterion will be used later in our suggested algorithms. 
 

2-2 Quasi-Newton Methods: 

 Quasi-Newton methods are probably the most popular general 

purpose algorithms for unconstrained optimization problems. Many QN-

methods are advantageous due to their fast convergence and absence of 

second order derivatives computation. 

 For the QN-methods assume that at the kth  iteration at 

approximation point 
k

x  and nn  matrix kH  are available. Then the 

methods proceed by generating a sequence of approximation points via the 

equation: 

                      
kkkk

dxx +−
+1

   

and 

                      
kkk

gHd −=
+1

          ……...................……(13) 
 

 Where kH  is an approximation of 1

kG − which is corrected or updated 

form iteration to iteration, In general, kH  is symmetric and positive definite, 

there are different choices of kH  (see Fletcher, 1987), we list here some 

most popular forms (Frandsen et. al. 2004) 
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kyT
kykHkv

T
kykHkvkykHkv

kHSR
k

H
)(

))((

1 −

−−
+=

+
      …….……(14) 

is called Rank one Correction formula, 

where 
kkk

xxv −=
+1

 and 
k

y  as in equation (9) 

kk

T

k

k

T

kkk

k

T

k

T

kk

k

DFP

k
yHy

HyyH

yv

vv
HH −+=

+1
         ………….…….(15) 

is the DFP formula 































 +
−++=

+
kyT

kv

T
kvkykHkHT

kykv

kyT
kv

T
kvkv

kyT
kv

kykHT
ky

kHBFGS
k

H 1
1

……………..(16) 

  

All three forms satisfy the Quasi-Newton Condition 

                                        kvkGky =  or  kvkykH =+1  

and maintains positive definite matrices if 
0

H  is positive. 

 We conclude our discussion of the QN methods with the following 

theorems: 
 

Theorem (1): If the DFP algorithm is applied to the quadratic with Hessian 
TGG =  we have                   

                     
iik

vyH =
+1

   …………….........……………… (17) 

 

Theorem (2): Suppose that 0
k

g . In the DFP algorithm, if 
k

H  is 

positive definite then so 
1+k

H . For proof of the theorems (1) and (2) (see 

Dixon, 1972) 

 

2-3 Preconditioned CG algorithm (PCG): 

              The Preconditioned CG methods (PCG) first appeared in paper by 

Axelsson (Axelsson, 1972). It was developed with object of accelerating the 

convergence of the CG-method by a transformation of variables while 

keeping the basic properties of the method. Such transformation was 

introduced by Allwright (Allwright, 1972), the symmetric positive definite 

matrix H  can be factored in various ways for example as TLLH =  where L  

is lower triangular and non-singular (for more detail see Allwright, 1972). 

 Buckley (Buckley, 1978. a and b) introduced an algorithm in which 

conjugate gradient and quasi-Newton search directions occur together and 

which can be interpreted as a conjugate gradient algorithm with changing 
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metric. Many authors have extended this type of algorithms (see for 

example Al-Bayati, 1996). 
 

             The search direction to the preconditioned (PCG) method is defined 

by: 

111 gHd −=  

 kdkkHgkd +−=+1  for 1k     ……………………(18) 

  

kHyT
kd

kHyT
kg

HS
1+=  

Where H  is one of the forms given in equations (7) or (8) or (9). In this 

paper, our focus is to the PDFH . 

 

3. Development of two suggested Algorithms 

3-1 Scaled CG-method New1 (say) 

 One of the reasons for inefficiency of conjugate gradient algoriths is 

that non of the k  takes into consideration the effect of inexact line 

searches (Hu and Story, 1990). In order to do this and find an optimal  , 

Liu and Story (1991) introduced an algorithm that finds an optimal ( LS ) 

by solving a quadratic function f  as: 

)(min),(
1111 ++++

+=
kkkk

dxfdxF 


            …………….………..(19) 

and 

),(min
11 kkkk

dgxF 


+−
++

             .…..…..…………….(20) 

an then takes )1(*
1 kdLSkgkd  ++−=+   

           Where *  and LS  solve (19) and (20), respectively, the major 

drawback in Liu and Story CG algorithm is solving equation (20) at each 

iteration.  

           In this paper, a new form of CG-method presented with line search 

and so it develops conjugate search directions. This new approach will find 

the minimum of a −n dimensional quadratic function in at most ( 1+n ) 

function and gradient evaluations. 

          The motivation of the iteration  

1k k k kx x d+ = +  , 0k ,        …….....…..…..……….(21)  

is that the search direction 
i

d  is chosen to ensure that the point 
1+i

x  is a 

minimize of the model  
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1
( ) ( )

2

T T

k k k k k k k k kf x d f x g v v G v+ = + + ,       ………..…..…...……..(22)  

where   1k k k k kv x x d+= − = ,          …………...…………(23)      

or 2 2 /

1

1
( ) ( ) ( )

2

T T

k k k k k k k kf x f x g g g f z g + = − +  ,       ………...……..(24) 

where 1[ , ]k kz x x + . If the distance between kx  and 1kx +  is small enough  

we can choose 1kz x +=  and consider 1( )kx I +  as an approximation of the 

2

1( )kf x + , where 1( )kx R +  . This is an approximation of the Hessian at a 

point 1kx +  is computed using the local information from point kx  therefore 

we can write 

1 12

2 1
( ) [ ]T

k k k k k kT

k k k

x f f g g
g g

 


+ += − +       ………………..……….(25) 

where the step size k  is satisfying line search conditions (Wolfe-Powell 

conditions) such as 

( ) ( ) T

k k k k k k kf x d f x g d +  +  and ( ) ( )T T

k k k k k kf x d d f x d  +  −   ……(26) 

where 10    
 

 Then we take 1( )kx I +  as an approximation of G . It is clear that if 

1( ) 0kx +  this approximation will be positive definite hence to complete 

the method.  
 

 We must consider the situation when 1( ) 0kx + , i.e. if  

                                          
1( ) ( ) 0T

k k k k kf x f x g g+ − +  

 In this case we can change the step size k  as k k +  s.t. 

1( ) ( ) ( ) 0T

k k i k k kf x f x g g + − + +     ……………………….(27) 

to get a value for k . Let us select a 0k  small enough and consider 

1

1
[ ( ) ( ) ]T

k k k k k kT

k k

f x f x g g
g g

  += − − +      ……………………….(28) 

then the new value of 1( )kx +  can be computed from 

1 12

2 1
( ) [ ( ) ( ) ( ) ]

( )

T

k k k k k k kT

k k k k

x f x f x g g
g g

  
 

+ += − + +
+

 ………....(29) 

then the new algorithm can be obtained by multiplying the search direction 

to scalar 
1

1

( )kx +

 as follows: 
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The outlines of the Self-Scaling CG-method (new1): 

Step (1): Set initial point 
1

x  and scalar  . 

Step (2): For 1k =  set 
11

gd −=  

Step (3): For 1k   compute 1k k k kx x d+ = +  where k  is obtained by line 

search procedure 

Step (4): If 
kg   stop. Otherwise go to step(5). 

Step (5): Compute 1 1,k k k k k kv x x y g g+ += − = − . 

Step (6): Compute 1( )kx +  from equations (25) or (28 and 29). 

Step (7): Set the new k to 

              1

1

1 T

k k
k T

k k k

g y

d y



+

+

=  

Step (8): set 
1 1

1

1
k k k k

k

d g d


+ +

+

= − +   

Step (9): If restart satisfied (restart Powell 1977) go to step (2) else k=k+1 

go to step (3)  
 

3-2 Self-Scaling PCG method (New2): 

 In this section, a new PCG method for solving unconstrained 

optimization problems is proposed . 

 This new PCG algorithm considered here has an additional property 

of being invariant under scaling of the function or of its variables where the 

objective function is twice continuously differentiable and search direction 

is descent i.e. 0T

k kg d  also we assume that line search is exact i.e. 

0T

k kg d =  . 

 Let 1k k k k kd H g d −= − +  where 1( , )k k k k ky d H g  += . where the 

matrix kH  is an approximation of 1−G  the inverse of Hessian of the 

objective function )(xf . 

          One important feature of PCG method is the choice of kH . The 

method requires kH  to be positive definite to deduce directions. 

           Let 1k kH I +=  as an approximation to the inverse Hessian where I  

and identity matrix and 1k +  computed from (25), if 1 0k +  and from (29) 

if 1 0k +  and satisfy the condition 

2
arg mink k k kH H y v



= −    ……………………..…..(30) 
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Where 
2

. usual Euclidian norm, then the new2 algorithm can be organized 

as follows: 
 

The outlines of the Self-Scaling PCG method (new2): 

Step(1): Set IHx =
11

,, . 

Step(2): For 1k =  set 
111

gHd −= . 

Step(3): Set 1k k k kx x d+ = +  for 1k  , where k  optimal step size. 

Step(4): If  
kg   stop. Otherwise 

              Check if restart equation (12) is satisfied then set 1kx x=  go to 

step (2). 

              otherwise go to step (5). 

Step(5): Compute 1 1;k k k k k ky g g v x x+ += − = −  and k  form equation (25). 

Step(6): Compute k kH I=  satisfying (30) and 1

T

k k k
k T

k k

g H y

d y
 += . 

Step(7): Set 1 1k k k k kd H g d+ += − +  go to step (3). 

 

4. Numerical Results: 

 All the algorithms described in this paper namely: 

1. The standard HSCG method. 

2. Preconditioned CG with (DFP and BFGS). 

3. New1 and New2 proposed algorithms are coded in double precision 

FORTRAN 90. The complete set of results is given in Table (1) and Table 

(2). In our numerical comparison, the number of function evaluations NOF 

and number of iterations NOI are considered. The actual convergence 

criterion employed was 
5

1
101 −

+


k
g  for all the algorithms. Well-

known test functions with different dimensions n are employed in this 

comparisons.  

 

Table (1a) Comparison of HSCG and New1 
Test Fun. N HSCG New1 

NOI NOF NOI NOF 

Dixon 4 13 28 13 28 

Powell (4) 4 50 114 46 96 

Rosen 4 28 68 23 57 

Cubic 4 16 42 15 (36) 

Wood 4 31 67 21 45 

Dixon 10 22 46 21 44 

Powell (4) 20 34 78 25 53 



Abbas Y.AL-Bayati_ Khlil K. Abo and salah G. Shareef  
 

 

 20 

Rosen 20 23 58 23 59 

Cubic 20 14 37 11 32 

Wood 20 52 107 31 66 

Powell (4) 100 129 263 67 (148) 

Rosen 100 23 58 22 57 

Cubic 100 14 37 11 32 

Wood 100 69 140 85 174 

Powell (4) 500 458 921 68 (165) 

Rosen 500 23 58 22 57 

Cubic 500 14 37 12 35 

Wood 500 69 140 86 176 

Powell (4) 1000 558 1121 70 (160) 

Rosen 1000 23 58 22 57 

Cubic 1000 14 37 12 35 

Wood 1000 70 142 90 184 

Total  1747 3657 786 1786 

 

 

 (1b) percentages  of improving the New1 method 
 

Tools HSCG method New1 method 

NOI 100% 55% 

NOF 100% 59% 
 

 Clearly there is an improvement of 45% in NOI and 41% in NOF for 

our new proposed algorithms. 

 

Table (2a)  Comparison of  PCG methods with DFP , BFGS and New1 
 

Test Fun. N PCG with DFP PCG with BFGS  New2 

NOI NOF NOI NOF NOI NOF 

Powell (4) 4 22 79 21 86 42 104 

Cubic 4 19 88 18 51 11 32 

Dixon 4 10 31 14 30 13 28 

Wood 4 54 149 37 109 21 45 

Rosen 4 23 63 34 87 30 81 

Powell (4) 20 36 135 38 123 30 83 

Cubic 20 37 93 18 51 11 32 

Dixon 10 31 90 22 47 21 44 

Wood 20 130 353 84 243 44 94 

Rosen 20 68 187 34 87 30 81 

Powell (4) 100 82 387 71 197 31 94 

Cubic 100 48 153 18 51 11 32 

Wood 100 243 861 251 774 85 147 
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Rosen 100 155 389 34 87 30 81 

Powell (4) 500 54 284 50 148 36 113 

Cubic 500 76 389 18 51 11 32 

Wood 500 288 891 200 801 86 176 

Rosen 500 178 403 34 87 30 81 

Total  1554 5025 996 3110 573 1380 

 

(2b) percentages  of improving the New-2 method 
 

Tools PCG with PDF PCG with PFGS New2 method 

NOI 100% 65% 39% 

NOF 100% 62% 28% 
 

 Clearly there are improvements of both standard BFGS and New2 in 

a bout 35% - 61% NOI and 38% -64% NOF, respectively  

 

Conclusions: 

Clearly, self-scaling techniques are very effective in unconstrained 

optimization algorithms. The two different approaches used in this paper  

proved to be very effective, especially for high dimension functions. 

Clearly, our numerical results indicate that there are improvements 

of proposed self-scaling techniques over standard DFP and BFGS 

algorithms.    
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