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ABSTRACT
In this paper, we describe two new algorithms which are
modifications of the Hestens-stiefl CG-method. The first is the scaled CG-
method (obtained from function and gradient-values) which improves the
search direction by multiplying to a scalar obtained from function value and
its gradient at two successive points along the iterations. The second is the
Preconditioned CG-method which uses an approximation at Hessein of the
minimizing function. These algorithms are not sensitive to the line searches.
Numerical experiments indicate that these new algorithms are effective and
superior especially for increasing dimensionalities.
Keywords: Unconstrained Optimization, Conjugate gradient algorithm,
Hestens-stiefl method, Hessein matrix.
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1. Introduction:

Unconstrained Optimization Problems expressed as:
min F(X);xeRM (1)
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Where f:R"—R is twice differentiable real valued function, is one of
the most active areas in optimization community. virtually appearing in
every human activity.

For solving these problems many efficient methods have been
suggested. Excellent Presentations of these methods can be found, for
example (Fletcher, 1987; Gill et-al 1981; Boyd and Vavdenberhe, 2003;
Nocedal, 1992; Edwin 2001). The most useful algorithms classify in: The
Conjugate gradient and its variants, Newton method and its extensions; the
DFP variable metric method, many different QN methods. All these
methods are iterative and consider iterations of the form:

X, =X +ad 2)
where d, is a descent direction i.e.

d.g,. <0 (3)

Where g, =Vf(X,) and «, is a step length obtained by line
search.Conjugate Gradient methods consider the search directions as:

d,=-9.,+8d k=1 (4)

kel
where the scalar /3, is chosen in such a manner that the method reduces to
the linear Conjugate Gradient when the function is quadratic and line search
Is exact. The rest of the methods define the search directions by:
d.==G.'0,, (5)

where Gy is a non-singular symmetric matrix. Mainly the matrix G is

selected as Gy =1 (identity matrix which gives the steepest descent method),
szvzf(xk) (the Newton method) or an approximation of the Hessian
V2£ (%)

Different modifications are made to the CG-algorithm in different
ways (see for example Hu and Story, 1990; Fletcher, 1993; Al-Baali 1985),
most of these modifications are made to the search directions to improve
then.

We end this general introduction by content of this paper which is
organized as follows: In section(2) we review the Conjugate gradient, QN-

methods and their Combinations, section(3) contains the development of the
new algorithms, the last section includes the numerical results.

2. Review of the methods:
2-1 Conjugate Gradient Methods:
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Non-linear Conjugate gradient (CG) is one of the most useful and
the earlist techniques for solving Large-scale non-linear optimization
problems.

Many variants of this original scheme have been proposed, and some
are widely used in practice, CG-methods only use the first order derivatives
information of the objective function and need not update the Hessian
matrix at each iteration. First, these are used to solve the general
unconstrained optimization problems by Fletcher and Reeves (1964).

Conjugate gradient methods depend on the fact that for quadratic, if
we search along a set of n mutually conjugate directions dy ,k=12,...n (by
Conjugate directions we mean that diTGdj =0, Vi# ], where G is Nxn
positive matrix), then we will find the minimum in at most n-steps if line
searches are exacts i.e.

d/g..,=0 (6)

Moreover, if we generate this set of directions by known gradients then each
direction can be simply expressed as:

d1 = _gl

mﬂz—mﬂ+@dwkzl} et (7)

Where

By, = g-I[+1yk (8)
K dEyk .....................................

And

Ve =0:—0, )

B, given in equation (8) is called the Hestenes-stifel formula;
clearly there are other different forms of /3, such as Polak-Ribeier formula
which is derived from ,Bk in equation (8) as follows:

Ok 1k _ Ok+1(0k1~ %) _ Ik 419k 41~ a1
de v Ok (Osg-9k) Ak hug—dy O
Assuming equation (6) and considering :
dk =—0, +ﬂk—ldk—l
(see Edwin 2001) we get d, g, =—0, g,

T T
Hence gk{rlyk = gk{flyk =BPR e, (10)
de Y o 9k 9k

13



Abbas Y.AL-Bayati_ Khlil K. Abo and salah G. Shareef

The Fletcher Reeves formula can be derived from [, by

T

considering g, .9, =0 to obtain PER :% .................... (11),
9k Ik

and there are many other forms. All these £, are equivalent on quadratics

with exact line searches and starting with steepest descent direction, but
when extended to general non-linear functions, the conjugate gradient

algorithms with different ﬁk are quite different in effacing and are
considered to be not so efficient as the QN algorithms in general. The focus
in this paper to the ,Bk given in equation (8) since its original CG-method.
Finally, in many implementations of Conjugate gradient methods,
The iteration (7) is restarted every n or (n+1) steps setting ,Bk equal to zero

i.e. taking steepest descent step. This ensures global convergence (Nocedal,
1992). However, different restarts are introduced (see Fletcher, 1987). One
of the well-known restarts given by Powell(Powell 1977) is:

T 2
‘gk+1gk‘202"gk" ............................ (12)
This criterion will be used later in our suggested algorithms.

2-2 Quasi-Newton Methods:

Quasi-Newton methods are probably the most popular general
purpose algorithms for unconstrained optimization problems. Many QN-
methods are advantageous due to their fast convergence and absence of
second order derivatives computation.

For the QN-methods assume that at the kth iteration at

approximation point X, and nxn matrix H, are available. Then the

methods proceed by generating a sequence of approximation points via the
equation:

Xk+1 - Xk + akdk
and

d,=—-Hg0, et (13)

Where H, is an approximation of G, which is corrected or updated
form iteration to iteration, In general, H is symmetric and positive definite,
there are different choices of H, (see Fletcher, 1987), we list here some
most popular forms (Frandsen et. al. 2004)
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(Vi — Hiyi) O —Hiy )T
(v — Hkyk)T Yk
is called Rank one Correction formula,
where V, =X, , — X, and Yy, as inequation (9)

Hk[’ff=Hk+VkVk _HyyHe (15)

T T
VoY, Y. HWY,
is the DFP formula
T T T T
BFGS _ Y Yk [ ViV | ViYk Pk HicYiv
H Hy +|1+ T T S ol EETTRSPPPPRPRRRS (16)
Vik Yo [k Yk Vk Yk

SR _
M =Mk

All three forms satisfy the Quasi-Newton Condition
Yk =GyVk OF Hicpa¥i =Yk
and maintains positive definite matrices if H0 IS positive.

We conclude our discussion of the QN methods with the following
theorems:

Theorem (1): If the DFP algorithm is applied to the quadratic with Hessian
G =G’ we have
H .Y =V (17)

Theorem (2): Suppose that g, #0. In the DFP algorithm, if H, is

positive definite then so Hk+1' For proof of the theorems (1) and (2) (see
Dixon, 1972)

2-3 Preconditioned CG algorithm (PCG):

The Preconditioned CG methods (PCG) first appeared in paper by
Axelsson (Axelsson, 1972). It was developed with object of accelerating the
convergence of the CG-method by a transformation of variables while
keeping the basic properties of the method. Such transformation was
introduced by Allwright (Allwright, 1972), the symmetric positive definite

matrix H can be factored in various ways for example as H = LLT where L
is lower triangular and non-singular (for more detail see Allwright, 1972).
Buckley (Buckley, 1978. a and b) introduced an algorithm in which
conjugate gradient and quasi-Newton search directions occur together and
which can be interpreted as a conjugate gradient algorithm with changing
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metric. Many authors have extended this type of algorithms (see for
example Al-Bayati, 1996).

The search direction to the preconditioned (PCG) method is defined

by:
dy=-H19;
dk+1:_Hgk +'8kdk for K>1 (. (18)
T
Pis = Ik 11HYk
dy Hyy

Where H is one of the forms given in equations (7) or (8) or (9). In this
paper, our focus is to the H"PF.

3. Development of two suggested Algorithms
3-1 Scaled CG-method Newl (say)

One of the reasons for inefficiency of conjugate gradient algoriths is
that non of the p, takes into consideration the effect of inexact line
searches (Hu and Story, 1990). In order to do this and find an optimal 3,
Liu and Story (1991) introduced an algorithm that finds an optimal (5| g)

by solving a quadratic function f as:

F(X..d,)=minf(x, +ed ) (19)
and
mﬁin F(X.,,—09..,+A4d) (20)

an then takes dy . =a’ (-9 1 + A 50 )

Where o* and BLg solve (19) and (20), respectively, the major
drawback in Liu and Story CG algorithm is solving equation (20) at each
iteration.

In this paper, a new form of CG-method presented with line search
and so it develops conjugate search directions. This new approach will find
the minimum of a N —dimensional quadratic function in at most ( N +1)
function and gradient evaluations.

The motivation of the iteration
X=X, +d, , o, =0, (21)

is that the search direction d, is chosen to ensure that the point X, , is a
minimize of the model
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1
f(xk+akdk):f(xk)+glvk+EvIGkvk, .............................. (22)
where v, =X, ,—X, = d,, (23)

1
or f (x,,,)=f (xk)—akglngrEafglvzf (2)9), e, (24)

where z €[x,,X,,]. If the distance between x, and x, , is small enough
we can choose z =X, ,, and consider y(x, )l as an approximation of the
vV (x,,,), where ¥(x,,,) € R. This is an approximation of the Hessian at a
point X, ., is computed using the local information from point x, therefore
we can write

2 1
]/(Xkﬂ):W?[fkﬂ—fk +akg-ll<—gk] .............................. (25)
k Jk k

where the step size ¢, is satisfying line search conditions (Wolfe-Powell
conditions) such as

f (¢ + e, d) < (x)+p0, 9,0, and [VE (x, +a,d, ) d,[<-0|VE (x, ) dy| e (26)
where 0< p <o <1

Then we take y(x,,,)! as an approximation of G. It is clear that if
7(X,.,) > 0 this approximation will be positive definite hence to complete
the method.

We must consider the situation when »(x,,,) <0, i.e. if

f (X.,,)-f X)+a0,9, <0
In this case we can change the step size ¢, as ¢, +7, S.t.

f X)) —F X)) +( +17)9,9 =0 (27)
to get a value for 7, . Let us selecta o, >0 small enough and consider

1
e =———F X )—F X)) =@ Te G +S1  coeeeeeiii (28)

k Jk
then the new value of y(x, ) can be computed from

2 1
y(X1) = f (X)) —-f X))+ +17)91 9,1 -oeveeenn(29)
o gl—gk (ak+77k)2 . “ IR
then the new algorithm can be obtained by multiplying the search direction
to scalar __1__ as follows:
7(Xii1)
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The outlines of the Self-Scaling CG-method (new1l):
Step (1): Set initial point X, and scalar & .
Step (2): For k =1 set d, =—g@,
Step (3): For k >1 compute x, , =X, +¢,d, where ¢, is obtained by line
search procedure
Step (4): If g, | < & stop. Otherwise go to step(5).
Step (5): Compute v, =X, , =X, Yy =0,..— 0, -
Step (6): Compute y(x,.,) from equations (25) or (28 and 29).
Step (7): Set the new g, to
_ 1 gy,

A= Yka d; Y

Step (8):sety, -—L g +pd,

k+1

Step (9): If restart satisfied (restart Powell 1977) go to step (2) else k=k+1
go to step (3)

3-2 Self-Scaling PCG method (New?2):

In this section, a new PCG method for solving unconstrained
optimization problems is proposed .

This new PCG algorithm considered here has an additional property
of being invariant under scaling of the function or of its variables where the
objective function is twice continuously differentiable and search direction

is descent i.e. g;d, <0 also we assume that line search is exact i.e.
g.d, =0.

Letd, =-H,g9, +54d, , where g =p(y,d,,H,0,.,). where the
matrix H, is an approximation of G 1 the inverse of Hessian of the
objective function f(x).

One important feature of PCG method is the choice of H, . The
method requires H, to be positive definite to deduce directions.

Let H, =y, ] as an approximation to the inverse Hessian where |
and identity matrix and y, ., computed from (25), if y, ., >0 and from (29)
if .., <0 and satisfy the condition
H, :arg:nin||Hkyk vl (30)
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Where HH2 usual Euclidian norm, then the new2 algorithm can be organized
as follows:

The outlines of the Self-Scaling PCG method (new2):
Step(1): Set X, &, H, =1.
Step(2): For k =1 set d, =—H,Q,.
Step(3): Set x,,, =X, +,d, for k >1, where ¢, optimal step size.
Step(4): If |g, | <& stop. Otherwise
Check if restart equation (12) is satisfied then set x, =X, go to

step (2).
otherwise go to step (5).
Step(5): Compute y, =9, ., —09,:V, =X,,,—X, and y, form equation (25).

.
Step(6): Compute H, =y, | satisfying (30) and S, =—gk+lHkyk .

dy Vo

Step(7): Set d,,, =—H, g,,, + A d, gotostep (3).

4. Numerical Results:

All the algorithms described in this paper namely:
1. The standard HSCG method.
2. Preconditioned CG with (DFP and BFGS).
3. Newl and New2 proposed algorithms are coded in double precision
FORTRAN 90. The complete set of results is given in Table (1) and Table
(2). In our numerical comparison, the number of function evaluations NOF
and number of iterations NOI are considered. The actual convergence

criterion employed was HgkﬂH-<1><10_5 for all the algorithms. Well-

known test functions with different dimensions n are employed in this
comparisons.

Table (1a) Comparison of HSCG and New1l

Test Fun. N HSCG Newl
NOI NOF NOI NOF
Dixon 4 13 28 13 28
Powell (4) 4 50 114 46 96
Rosen 4 28 68 23 57
Cubic 4 16 42 15 (36)
Wood 4 31 67 21 45
Dixon 10 22 46 21 44
Powell (4) 20 34 78 25 53
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Rosen 20 23 58 23 59
Cubic 20 14 37 11 32
Wood 20 52 107 31 66
Powell (4) 100 129 263 67 (148)
Rosen 100 23 58 22 57
Cubic 100 14 37 11 32
Wood 100 69 140 85 174
Powell (4) 500 458 921 68 (165)
Rosen 500 23 58 22 57
Cubic 500 14 37 12 35
Wood 500 69 140 86 176
Powell (4) 1000 558 1121 70 (160)
Rosen 1000 23 58 22 57
Cubic 1000 14 37 12 35
Wood 1000 70 142 90 184
Total 1747 3657 786 1786

(1b) percentages of improving the Newl method

Tools HSCG method | Newl method
NOI 100% 55%
NOF 100% 59%

Clearly there is an improvement of 45% in NOI and 41% in NOF for
our new proposed algorithms.

Table (2a) Comparison of PCG methods with DFP , BFGS and Newl

Test Fun. N PCG with DFP PCG with BFGS | New?2
NOI NOF NOI | NOF NOI NOF

Powell (4) | 4 22 79 21 86 42 104
Cubic 4 19 88 18 51 11 32
Dixon 4 10 31 14 30 13 28
Wood 4 54 149 37 109 21 45
Rosen 4 23 63 34 87 30 81
Powell (4) | 20 36 135 38 123 30 83
Cubic 20 37 93 18 51 11 32
Dixon 10 31 90 22 47 21 44
Wood 20 130 353 84 243 44 94
Rosen 20 68 187 34 87 30 81
Powell (4) | 100 |82 387 71 197 31 94
Cubic 100 48 153 18 51 11 32
Wood 100 243 861 251 774 85 147
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Rosen 100 [ 155 389 34 |87 30 81
Powell (4) | 500 |54 284 50 | 148 36 113
Cubic 500 | 76 389 18 |51 11 32
Wood 500 | 288 891 200 | 801 86 176
Rosen 500 | 178 403 34 |87 30 81
Total 1554 | 5025 | 996 | 3110 573 1380

(2b) percentages of improving the New-2 method

Tools PCG with PDF | PCG with PFGS New2 method
NOI 100% 65% 39%
NOF 100% 62% 28%

Clearly there are improvements of both standard BFGS and New?2 in

a bout 35% - 61% NOI and 38% -64% NOF, respectively

Conclusions:

Clearly, self-scaling techniques are very effective in unconstrained
optimization algorithms. The two different approaches used in this paper
proved to be very effective, especially for high dimension functions.

Clearly, our numerical results indicate that there are improvements
of proposed self-scaling techniques over standard DFP and BFGS

algorithms.
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