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study. All the newly derived optimized third derivative hybrid block methods possessed 

very small error constants with high order accuracy.
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  1    Introduction 

In the realm of mathematics, numerical methods have 

garnered increasing interest among mathematicians. This is 

because everyday problems arising in fields such as science, 

engineering, and technology among others are often 

transformed into mathematical formulations. Many of these 

problems lack analytical solutions, thus necessitating the 

application of numerical techniques to approximate their 

solutions. However, given that numerical methods are 

essentially approximations of analytical solutions, it 

becomes paramount to exercise caution during their 

development to minimize the potential for significant errors 

Notably, numerous researchers have previously devised 

numerical methods for both specific and general second-

order initial value problems (IVPs) such as [16-20] among 

others. For instance, Abdelrahim et al. [2] introduced a two-

step optimized hybrid third derivative block method with a 

generalized one-off-step point. The optimal point was 

situated at the function (f) and its derivative counterpart (g) 

to develop an order P = 8 methods, rendering the method 

suitable for addressing general second-order IVPs. In the 

work of Shokri [3], a two-step explicit symmetric P-stable 

method was derived. This method incorporated the 

Obrechkoff and hybrid terms of orders four and six, 

specifically designed for solving second-order ordinary 

differential equations (ODEs). The method presented by 

Shokri represented an advancement over the approach 

proposed by Li and Wu [7]. 

Furthermore, in the work of Olabode and Omole [9], a 

continuous hybrid multistep method encompassing both one-

step and two-step approaches was developed to address 

IVPs. The one-step method utilized three equally spaced off-

step points, while the two-step method used two equally 

spaced off-step points [9]. The utilization of Legendre 

polynomials as basis functions facilitated the derivation of 

discrete schemes from the continuous framework. 

Additionally, Rufai and Ramos [15] developed an order P = 

7, one-step hybrid block method that included a third 

derivative term, and this approach was formulated using 

three equally spaced off-step points at collocation, which 
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proved effective for solving problems such as Bratu’s and 

Troesch’s problems. 

For a direct solution of IVPs, Abdelrahman and Omar [1] 

developed an order P = 5 one-step hybrid block method. 

This method utilized a power series polynomial as a basis 

function and incorporated three random off-step points to 

enhance its accuracy. In another approach, Olabode and 

Momoh [10] derived a two-step Chebyshev hybrid 

multistep method. This method utilized four equally spaced 

off-step points and the Chebyshev polynomial of the first 

kind as a basis function. The resulting method was tailored 

for the direct solution of second-order IVPs and BVPs. 

In the realm of accuracy enhancement, Ramos and Singh 

[14] derived a two-step optimized third derivative hybrid 

block method of order P = 7. This method utilized two off-

step points and was tailored for solving general second-

order BVPs. Singla et al. [11] developed an optimized two-

step hybrid block method of order P = 5. This method was 

implemented in a variable step size mode for the solution of 

IVPs. An optimized two-step hybrid block method that 

utilized two optimal points for the solution of IVPs was 

derived in [8,13]. Orakwelu et al. [12] developed an 

optimized two-step block hybrid method with four 

symmetric optimal points for the solution of IVPs. 

Hybrid methods are highly efficient and have been proposed 

to circumvent the “Dahlquist zero-stability barrier” 

condition and to improve the accuracy of the block methods. 

Despite the hybrid block methods that were proposed by 

some of these authors, inefficiency in terms of accuracy for 

the solution of IVPs was discovered among others. Due to 

this, this study aims to improve on some of these setbacks. 

The motivation behind this research is to develop a family 

of one-step optimized third-derivative hybrid block 

methods, utilizing various optimal points, to address general 

second-order IVPs. By incorporating optimization 

techniques into our methodology, our primary aim is to 

enhance the accuracy. The properties of the proposed 

methods shall be analyzed such as zero-stability, 

consistency, convergence, and linear stability. Numerical 

experiments shall be conducted on the proposed one-step 

optimized third derivative hybrid block methods. This 

contribution is expected to significantly advance the field of 

numerical techniques for effectively solving differential 

equations. This paper is organized as follows: Section 2 

describes the derivation of the proposed methods. Section 3 

contains an analysis of the properties of the derived methods. 

In section 4, the implementation is discussed and some 

numerical examples are presented. Section 5 presents the 

results and discussion. Finally, section 6 consists of a 

conclusion and future recommendations. 

 

2   Derivation of the Optimized Hybrid Methods 
This section outlines the procedure for deriving the members of 

the one-step optimized third derivative hybrid block methods 

designed for solving general second-order initial value problems, 

as given by 

( ) ( ) ( )0 0,, , ,y x f x y y y x y = =  ( )0 0.y x y =        ...(1) 

Here, f  is a sufficiently differentiable function 

that adheres to a Lipschitz condition.  

The main objective is to derive algorithms of the form 

given as 

 

 

𝑌(𝑥) = 𝜇0(𝑥)𝑦𝑛 + 𝜇1(𝑥)𝑦𝑛+1 + ℎ2[∑ 𝜁𝑗(𝑥1
𝑗=0 )𝑓𝑛+𝑗 + ∑ 𝜁𝑝𝑖

(𝑥)𝑓𝑛+𝑝𝑖

𝑚
𝑖=1 + ℎ ∑ 𝜉𝑗(𝑥)𝑔𝑛+𝑗]1

𝑗=0 , 𝑗 = 0,1     ...(2) 

 

 where m is the number of off-step points. The 

derivative of equation (2) is given in the form as 

 

𝑌′(𝑥) =
1

ℎ
[𝜇′0(𝑥)𝑦𝑛 + 𝜇′1(𝑥)𝑦𝑛+1 + ℎ2 ∑ 𝜁′𝑗(𝑥1

𝑗=0 )𝑓𝑛+𝑗 + ℎ2 ∑ 𝜁′𝑝𝑖
(𝑥)𝑓𝑛+𝑝𝑖

𝑚
𝑖=1 + ℎ3 ∑ 𝜉′𝑗(𝑥)𝑔𝑛+𝑗

1
𝑗=0 ]  … (3) 

 

to obtain additional equations. Let imposed that 

( ) ( ).Y x x =     …(4) 

To proceed with the derivation, let’s denote the step size 

ℎ = 𝑥𝑛+1 − 𝑥𝑛 for 𝑛 = 0, 1, … , 𝑁 − 1 and approximate 

the exact solution y(x) of equation (1) at the grid points 

 𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑁−1 < 𝑥𝑁 = 𝑏 in the interval [a, b] 

by a polynomial of degree M given as 

( ) ( ) ( )
0

,
M

j

j n

j

y x Y x c x x
=

 = −  …(5) 
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( ) ( ) ( ) ( )
2

2

1 ,
M

j

j n

j

y x Y x j j c x x
−

=

  = − −    … (6) 

( ) ( ) ( )( ) ( )
3

3

1 2 ,
M

j

j n

j

y x Y x j j j c x x
−

=

  = − − −  … (7) 

where cj represents unknown coefficients to be determined, 

M = t + u − 1 when t is the interpolation point and u denotes 

the collocation points. These methods are derived by the 

introduction of specific off-step points defined as 𝑥𝑝𝑖
= 𝑥𝑛 +

𝑝𝑖ℎ, where 0 < 𝑝𝑖 < 1 for                𝑖 = 1, 2, … , 𝑚. These 

off-step points are outlined in Table 1 where m is the number 

of off-step points.               

Table 1: Distribution of the off-step points 
m          Off-Step Points 

1 r 

2 r, 1 – r 

3 
𝑟,

1

2
, 1 − 𝑟 

 

In Case I, when m = 1, equation (5) is interpolated at 𝑥 =
𝑥𝑛+𝑗 for 𝑗 = 0, 1 and collocate equation (6) at 𝑥 = 𝑥𝑛+𝑗 for 

𝑗 = 0, 𝑟, 1. Additionally, equation (7) is collocated at 𝑥 =
𝑥𝑛+𝑗 for 𝑗 = 0, 1. This can be expressed as follows: 

𝑌(𝑥𝑛+𝑗) = 𝑦𝑛+𝑗, 𝑗 = 0, 1, 

  𝑌′′(𝑥𝑛+𝑗) = 𝑓𝑛+𝑗, 𝑗 = 0, 𝑟, 1,  

 𝑌′′′(𝑥𝑛+𝑗) = 𝑔𝑛+𝑗 , 𝑗 = 0, 1. 

The above expression is solved using Mathematica to obtain 

the values of the unknown coefficients 𝑐𝑗, where 𝑗 =

0, 1, 2, … , 𝑡 + 𝑢 − 1. This process results in a system of 𝑡 + 𝑢 

equations with 𝑡 + 𝑢 unknowns. Subsequently, we substitute 

the obtained solutions into equation (5) to yield the continuous 

approximation equation in the form of (2). Equation (2) is 

evaluated at 𝑥 = 𝑥𝑛+𝑟 and equation (3) at   𝑥 = 𝑥𝑛+𝑗 for 𝑗 =

0, 𝑟, 1 to obtain the model equation, which is expressed as 

    𝑦𝑛+𝑟 =
ℎ2(𝑟 − 1)(𝑟 − 1(𝑟 − 3(18 + 𝑟(𝑟 − 7(2𝑟 − 3)))))𝑓𝑛

60𝑟
 

+
(2ℎ2𝑟4 − 4ℎ2𝑟3 + ℎ2𝑟2 + ℎ2𝑟 + ℎ2)𝑓𝑛+𝑟

60(𝑟 − 1)𝑟
 

−
ℎ2𝑟(𝑟(2𝑟4 − 7𝑟3 + 𝑟2 + 𝑟 + 10) − 6)𝑓𝑛+1

60(𝑟 − 1)
+ 

(ℎ3𝑟7 − 5ℎ3𝑟6 + 9ℎ3𝑟5 − 5ℎ3𝑟4 − 3ℎ3𝑟3 + 4ℎ3𝑟2 − ℎ3𝑟)𝑔𝑛

60(𝑟 − 1)𝑟
+ 
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(ℎ3𝑟7 − 2ℎ3𝑟6 + 2ℎ3𝑟3 − ℎ3𝑟2)𝑔𝑛+1 + (−60𝑟3 + 120𝑟2 − 60𝑟)𝑦𝑛

60(𝑟 − 1)𝑟
+ 𝑟𝑦𝑛+1, 

         ℎ𝛿𝑛 = −
ℎ2(𝑟(21𝑟 − 2) − 1)𝑓𝑛

60𝑟2
−

ℎ2𝑓𝑛+𝑟

60(𝑟 − 1)2𝑟2
+

ℎ2((16 − 9𝑟)𝑟 − 6)𝑓𝑛+1

60(𝑟 − 1)2
+ 

(−3ℎ3𝑟4 + 7ℎ3𝑟3 − 5ℎ3𝑟2 + ℎ3𝑟)𝑔𝑛 + (2ℎ3𝑟4 − 3ℎ3𝑟3 + ℎ3𝑟2)𝑔𝑛+1

60(𝑟 − 1)2𝑟2
 

+
(−60𝑟4 + 120𝑟3 − 60𝑟2)𝑦𝑛

60(𝑟 − 1)2𝑟2
+ 𝑦𝑛+1, 

        ℎ𝛿𝑛+𝑟 =
ℎ2(𝑟(𝑟(2𝑟(𝑟(3(𝑟 − 2)𝑟 − 5) + 20) − 21) + 2) + 1)𝑓𝑛

60𝑟2
+ 

(12ℎ2𝑟5 − 30ℎ4 + 20ℎ2𝑟3 − ℎ2)𝑓𝑛+𝑟

60(𝑟 − 1)2𝑟2
−

ℎ2(𝑟(2(3(𝑟 − 4)𝑟 + 10)𝑟3 + 9𝑟 − 16) + 6)𝑓𝑛+1

60(𝑟 − 1)2
 

+
(3ℎ3𝑟8 − 16ℎ3𝑟7 + 33ℎ3𝑟6 − 30ℎ3𝑟5 + 7ℎ3𝑟4 + 7ℎ3𝑟3 − 5ℎ3𝑟2 + ℎ3𝑟)𝑔𝑛

60(𝑟 − 1)2𝑟2
 

+
(3ℎ3𝑟8 − 8ℎ3𝑟7 + 5ℎ3𝑟6 + 2ℎ3𝑟4 − 3ℎ3𝑟3 + ℎ3𝑟2)𝑔𝑛+1

60(𝑟 − 1)2𝑟2
 

+
(−60𝑟4 + 120𝑟3 − 60𝑟2)𝑦𝑛

60(𝑟 − 1)2𝑟2
+ 𝑦𝑛+1, 

         ℎ𝛿𝑛+1 =
ℎ2(𝑟(9𝑟 − 2) − 1)𝑓𝑛

60𝑟2
+

ℎ2𝑓𝑛+𝑟

60(𝑟 − 1)2𝑟2
+

ℎ2(𝑟(21𝑟 − 40) + 18)𝑓𝑛+1

60(𝑟 − 1)2𝑟2
 

+
(2ℎ3𝑟4 − 5ℎ3𝑟3 + 4ℎ3𝑟2 − ℎ3𝑟)𝑔𝑛 + (−3ℎ3𝑟4 + 5ℎ3𝑟3 − 2ℎ3𝑟2)𝑔𝑛+1

60(𝑟 − 1)2𝑟2
 

+
(−60𝑟4+120𝑟3−60𝑟2)𝑦𝑛

60(𝑟−1)2𝑟2 + 𝑦𝑛+1. … (8)

 

To achieve maximum accuracy, we examine the continuous 

scheme hδn+1 based on the model equation and optimize the 

local truncation error of hδn+1 to determine the value of r. The 

local truncation errors are given by 
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( )
( ) ( )   ( )( ) ( )  

( )
8 87 7

9

1

3 2 24 7
;

50400 86400

nn

n

r r y x hr y x h
L y x h O h+

− +−
= − + +   . … (9) 

The coefficient of h7 in equation (9) is set to zero to determine 

the value of r, which is given as 

4

7
r = .                                                                         …(10) 

Substituting the value of r into equation (9), 

the truncation error simplifies to 

( )
( ) ( )

( )
8 8

9

1 ;
1411200

n

n

y x h
L y x h O h+ = +   .             … (11) 

Therefore, the derived implicit hybrid block method is 

expressed as 

 

( )( )2

4 1 1

7 1
4

7

250965 1124011 4 26696 7407 636
3 4

12101040 7 7

n n n n
n

n n

n

h f f f h g g
y y

y

+ +
+

+

+

 
+ + + − 

 = − + + , 

                ℎ𝛿𝑛 = −

ℎ2 (2079𝑓𝑛 + 2401𝑓
𝑛+

4
7

− 160𝑓𝑛+1 + ℎ(180𝑔𝑛 + 48𝑔𝑛+1))

8640
− 𝑦𝑛 + 𝑦𝑛+1, 

             ℎ𝛿
𝑛+

4
7

=

ℎ2 (1229121𝑓𝑛 + 1523263𝑓
𝑛+

4
7

− 1270624𝑓𝑛+1 + 4ℎ(40563𝑔𝑛 + 41844𝑔𝑛+1))

864020744640
− 𝑦𝑛 + 𝑦𝑛+1, 

      ℎ𝛿𝑛+1 =
ℎ2(351𝑓𝑛+2401𝑓

𝑛+
4
7

+1568𝑓𝑛+1+ℎ(36𝑔𝑛−96𝑔𝑛+1))

8640
− 𝑦𝑛 + 𝑦𝑛+1. … (12) 

In Case II, where m = 2, equation (5) is interpolated at 𝑥 =
𝑥𝑛+𝑗 for j = 0, 1, and equation (6) is collocated at 𝑥 = 𝑥𝑛+𝑗 

for j = 0, r, 1−r, 1. Also, equation (7) is collocated at 𝑥 =
𝑥𝑛+𝑗 for      j = 0, 1. Following procedures similar to those in 

Case I, equation (2) is evaluated at 𝑥 = 𝑥𝑛+𝑗 for     j = r, 1 − 

r, and equation (3) is evaluated at        𝑥 = 𝑥𝑛+𝑗 for j = 0, r, 

1 − r, 1. The value of r is determined by optimizing the local 

truncation error of the continuous scheme hδn+1. The local 

truncation errors are given as 

ℒ[𝑦(𝑥𝑛+1); ℎ] = −
(14(𝑟−1)𝑟+3)𝑦(8)[𝑥𝑛]ℎ8

604800
−

(16+75(−1+𝑟)𝑟)𝑦(9)[𝑥𝑛]ℎ9

6350400
+ 0(ℎ10) … (13) 

 

To minimize the local truncation error, we set 14(r−1) r+3 = 

0 in equation (13). The unique solution within the range     

 0 < r < 1 − r < 1 is
1

(7 7)
14

r = − .                         … (14) 

By substituting the value of r into equation (13), the 

truncation error becomes 

( )
( )  

( )
9 9

10

1 ;
88905600

n

n

y x h
L y x h O h+ = − +   .           …(15) 

The following system of method equations is obtained 
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( )

( ) ( )( ) )

( ) ( )( )

2

1 1 1 1 1
( 7 7)

2 2 142 7 2 7

1 1

1

3478 7 9604 215992 13540
3457440

(9604 3478 7) 3 71 7 49 71 7 49

1
7 7 7 7 49

14

n

n
n n

n n n

n n

h
y f f f

f h g g

y y

+ − + − + +

+ +

+


= − + + +



+ − + − + −

+ − + −

 

( )
( )

( ) ( )( ) )

( ) ( )( )

2

1 1 1 1
7 7 ( 7 7)

14 2 142 7

1 1

1

3478 7 9604 135240 215992
3457440

(9604 3478 7) 3 49 71 7 49 71 7

1
7 7 7 7 ,

14

n

n
n n

n n n

n n

h
y f f f

f h g g

y y

+ + + − + +

+ +

+


= − − −



− + + + + − +

+ − + +

 

( ) ( )
( )

2

1 1 1 1 1,
7 7

2 142 7

71 14 7 7 14 7 7 3 3
540

n n n n n n
n n

h
h f f f f hg y y + +

+ − + +

 
= − − + + − + − − − +  

 

 

( )
( )

( ) ( ) ( )( ))

2

1 1 1 1 1
7 7

2 2 142 7 2 7

1 1 1

2 448 7 853 3640 7 5712 7
105840

2 853 448 7 3 37 34 7 37 34 7 ,

n
n n n

n n n n n

h
h f f f

f h g g y y


+ − + − + +

+ + +


= + − − +



− + + + + − − +

 

( )
( )

( )

( ) ( ) ( )( ))

2

1 1 1 1
7 7 7 7

14 2 142 7

1 1 1

1706 896 7 5712 7 3640 7
105840

2 853 448 7 3 37 34 7 37 34 7 ,

n
n n n

n n n n n

h
h f f f

f h g g y y


+ + + − + +

+ + +


= − + +



− + + − + + − +

 

( ) ( )
( )

)

2

1 1 1 1
7 7

2 142 7

1 1 1

3 14 7 7 14 7 7
540

71 3 .

n n
n n

n n n n

h
h f f f

f hg y y

 +
+ − + +

+ + +


= − − + + +



+ − − +

 … (16) 

In Case III, where m = 3, equation (5) is interpolated at 𝑥 =

𝑥𝑛+𝑗 for 𝑗 = 0,
1

2
 , and equation (6) is collocated at 𝑥 = 𝑥𝑛+𝑗 

for          𝑗 = 0, 𝑟,
1

2
, 1 − 𝑟, 1. Additionally, equation (7) is 

collocated at 𝑥 = 𝑥𝑛+𝑗 for 𝑗 = 0, 1. The derivation follows 

a similar pattern as in Case I. Equation (2) is evaluated at 

𝑥 = 𝑥𝑛+𝑗 for           𝑗 =  𝑟, 1 − 𝑟, 1   and equation (3) is 

evaluated at 𝑥 = 𝑥𝑛+𝑗 for 𝑗 = 0, 𝑟,
1

2
, 1 − 𝑟, 1. 

This leads to the corresponding local truncation error, given 

by 

( )
( )( ) ( )   ( )( ) 

( )
9 9 10

11

1

16 1 1 7260 1 1217
;

25401600 52022476800

n n

n

r r y x h r r x h
L y x h O h+

− + − +
= − − +   … (17) 

To determine the value of r, let's set the coefficient of h9 in 

equation (17) to zero. The unique solution within the range 
0 < 𝑟 <

1

2
< 1 − 𝑟 < 1 is 
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1
(3 3)

6
r = −                                                … (18) 

Substituting equation (18) into (17), the truncation error 

simplifies to 

( )
( ) ( )

( )
10 10

11

1 ;
7431782400

n

n

y x h
L y x h O h+ = − +      . …(19) 

The block method equation can then be formulated in the 

following form 

 

 

 

 

 

 

( )
( )( ( )

( )
( )

( ) ( )( ( ) ))
( )

1 1

2 2 3

2
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2 2 3

1 1
3 3

2 6

3

1 1

1

2

3 1
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1451520
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33

n
n
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n
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y y
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+ +

+

−
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

+ − + − +

+ + + − + +
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( )
( )( ( )

( )
( )

( ) ( ) ( )( ))

( )

2

1 1 1
3 3

6 2 2 3

1 1
3 3

2 6

3

1 1

1

2

1
2 817 389 3 9 1501 783 3

1451520

8(2911 1989 3) 9 547 783 3

817 155 3 113 43 3 113 11 3

1 1
3 3 ,

33

n nn

n n

n n n

n
n

y h f f

f f

f h g g

y y

+ + + −

+ + +

+ +

+


= − + + +



+ + + − +

− + + − + + +

− + +

 

(
( )

( ))

2

1 1 1 1 1
3 3

2 2 62 3

1 1 1

2

26 1566 3536 1566
26880

26 3 2 ,

n n
n n n

n n n n
n

h
y f f f f

f h g g y y

+
+ − + + +

+ +
+

= + + +

+ − − − +

 

( )

( ) ( ))

2

1 1 1

2 22 3

1 1 1 1
(3 3) ,

6 2

2342 18 105 64 3 560
26880

18 105 64 3 38 67 3 2 2

n n
n n

n n n n
n n

h
h f f f

f f h g g y y


+ − +

+ +
+ + +


= − − + −



+ − + − − − − +

 

 



Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM), Vol. 17, No. 2, 2023 (125-140) 
 

132  

( )( ( )

( )
( )

( ) ) ( )( ( ) )

2

1 1 1 1

2 22 3 2 3

1 1
3 3

2 6

3
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1

2

1
2 2213 704 3 7047 6720 3

241920

8(1989 1472 3) 3 2349 1024 3

1979 704 3 245 96 3 299 96 3

2 2 ,

n

n
n

n n

n n n

n
n

h h f f

f f

f h g g

y y


+ − + −

+ + +

+ +

+


= + + −



+ − + −

+ − + + + + −

− +
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+ +
+ +

+


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
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6
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2
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2 2 .
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n n

n n n
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h f f f
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 +
+ − +

+ +
+ +

+


= + − +



+ + + − +

− +

… (20) 

 

 

3   Analysis of the Methods 
In this section, the properties of the one-step optimized third 

derivative hybrid block methods derived using the m off-step 

points are analyzed. Aspects such as order and error 

constants, zero stability, consistency, convergence, and 

linear stability have been considered. The derived methods 

are then reformulated into a matrix equation form, given as 

𝐴1𝑌𝑛+1 = 𝐴0𝑌𝑛 + ℎ𝐷0∆𝑛 + ℎ2(𝐵0𝐹𝑛 + 𝐵1𝐹𝑛+1) + ℎ3(𝐶0𝐺𝑛 + 𝐶1𝐺𝑛+1)  … (21) 

Here, 𝐴0, 𝐴1, 𝐵0, 𝐵1, 𝐶0, 𝐶1 𝑎𝑛𝑑 𝐷0  are matrices of 

coefficients, each with dimensions 𝑚 × 𝑚. Additionally, the 

vectors 𝑌𝑛+1, 𝑌𝑛, 𝐹𝑛, 𝐹𝑛+1, 𝐺𝑛 , 𝐺𝑛+1 𝑎𝑛𝑑 ∆𝑛 are defined as 

follows 

𝑌𝑛 = (𝑦𝑛−𝑝1
, 𝑦𝑛−𝑝2

, … , 𝑦𝑛−𝑝𝑚
, 𝑦𝑛)𝜏,  

 

𝑌𝑛+1 = (𝑦𝑛+𝑝1
, 𝑦𝑛+𝑝2

, … , 𝑦𝑛+𝑝𝑚
, 𝑦𝑛+1)𝜏, 

 

𝐹𝑛 = (𝑓𝑛−𝑝1
, 𝑓𝑛−𝑝2

, … , 𝑓𝑛−𝑝𝑚
, 𝑓𝑛)𝜏, 

 

𝐹𝑛+1 = (𝑓𝑛+𝑝1
, 𝑓𝑛+𝑝2

, … , 𝑓𝑛+𝑝𝑚
, 𝑓𝑛+1)𝜏, 
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𝐺𝑛 = (𝑔𝑛−𝑝1
, 𝑔𝑛−𝑝2

, … , 𝑔𝑛−𝑝𝑚
, 𝑔𝑛)𝜏 , 

 

𝐺𝑛+1 = (𝑔𝑛+𝑝1
, 𝑔𝑛+𝑝2

, … , 𝑔𝑛+𝑝𝑚
, 𝑔𝑛+1)𝜏 , 

∆𝑛= (𝛿𝑛−𝑝1
, 𝛿𝑛−𝑝2

, … , 𝛿𝑛−𝑝𝑚
, 𝛿𝑛)𝜏 

 

 

 

 

 

 

3.1    Order and Error Constants 

Let's consider the linear difference operator ℒ 

associated with the developed optimized third-

derivative hybrid block method, which is given by 

ℒ[𝑦(𝑥𝑛); ℎ] = ∑ [𝜇𝑗𝑦(𝑥𝑛 + 𝑗ℎ) − ℎ𝛿𝑗𝑦′(𝑥𝑛 + 𝑗ℎ) − ℎ2𝜁𝑗𝑦′′(𝑥𝑛 + 𝑗ℎ) − ℎ3𝜉𝑗𝑦′′′(𝑥𝑛 + 𝑗ℎ)]𝑚+1
𝑗=0  … (22) 

where 𝑦(𝑥𝑛) is a sufficiently differentiable function. By 

expanding Equation (22) in terms of 𝑦(𝑥𝑛 + 𝑗ℎ), 𝑦′(𝑥𝑛 +
𝑗ℎ), 𝑦′′(𝑥𝑛 + 𝑗ℎ) 𝑎𝑛𝑑 𝑦′′′(𝑥𝑛 + 𝑗ℎ) around 𝑥𝑛  and 

collecting terms according to the powers of h, gives 

 

 

 

ℒ[𝑦(𝑥𝑛); ℎ] = 𝐶0𝑦(𝑥𝑛) + 𝐶1ℎ𝑦′(𝑥𝑛) + 𝐶2ℎ2𝑦′′(𝑥𝑛) + ⋯ + 𝐶𝑝ℎ𝑝𝑦𝑝(𝑥𝑛) + ⋯  … (23) 

Here, 𝐶𝑗 for 𝑗 = 0, 1, 2, … , 𝑁 are vectors. A method is 

considered to be of order p if 𝐶0 = 𝐶1 = 𝐶2 = ⋯ = 𝐶𝑝+1 =

0 𝑎𝑛𝑑 𝐶𝑝+2 ≠ 0. The vector 𝐶𝑝+2 is referred to as the error 

constant. 

The order and error constants of the derived m    off-step points 

methods are presented as follows 

For Case I when m = 1, we have 

7

2889 1 1233
, , ,0

1152960200 50400 94119200
C


− 

=  
 

 

which indicates that the method has an order of  p = 5.  

 

 

 

 

 

For Case II when m = 2, we have 

8

9 9 3 3
, ,0, , ,0

172103680 172103680 3073280 7 3073280 7
C


− 

=  
 

 and this implies that the method has an order of p = 6. 

In Case III, when m = 3, we obtain, 

 

 

9

1 1 1 1 1
0, , ,0, , , ,0

156764160 92897280 156764160940584960 3 940584960 3
C


− − − 

=  
 

. 

 

This results in the method having an order of    p = 7. 

 

3.2   Zero Stability 
Zero-stability is a critical property that determines the 

stability of a numerical method. It can be analyzed from 

equation (21) as the limit h → 0. In this limit, equation (21) 

simplifies to 

A1Yn+1 = A0Yn.                     … (24) 

The characteristic polynomial ρ(λ) is defined by 

𝜌(𝜆) = det [𝜆𝐴1 − 𝐴0].                 …(25) 

By calculating the characteristic polynomials for the derived 

methods with m = 1, 2, 3, we find; for m = 1: ρ(λ) = λ(1 + λ), 

for m = 2: ρ(λ) = λ2(1 + λ) and for m = 3: ρ(λ) = 2(−1 + λ)λ3. 

A numerical method is considered zero-stable if the roots         

λi, i = 1,2,...,s of the characteristic polynomial ρ(λ) satisfy 

|𝜆𝑖 |≤1. For those roots with |𝜆𝑖 |=1, their multiplicity must not 

exceed the order of the differential equation being solved (see 

Lawal et al. [6]). From the calculated characteristic 

polynomials, it’s evident that all the derived methods satisfy 

the condition for zero stability. 
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3.3   Consistency 

The Linear multistep method is considered consistent if it has 

an order 𝑝 ≥ 1 (see Lambert [5]). In this context, all the 

derived one-step optimized third derivative hybrid block 

methods have an order 𝑝 = 𝑚 + 4 > 1. Here, 𝑚 represents 

the number of off-step points. Based on these results, it can 

be concluded that the proposed methods are indeed 

consistent. 

3.4    Convergence 

The convergence of the derived methods is determined by 

analyzing their consistency and zero-stability. This analysis 

is performed in accordance with Dahlquist’s theorem 3.1, 

which provides the necessary conditions for the convergence 

of numerical methods for solving differential equations. 

Theorem 3.1 Convergence 
The necessary and sufficient conditions for the Linear 

multistep methods to be convergent are that they must be both 

consistent and zero-stable. Given that all the methods also 

meet the criteria for consistency and zero-stability, in 

accordance with Dahlquist's theorem 3.1, it can be concluded 

that these methods are convergent. This means that the 

methods provide accurate numerical approximation and 

converge to the true solution as the step size tends to zero. 

3.5   Linear Stability 
The stability region of a numerical method illustrates its 

behavior in a complex plane. It can be determined through the 

following approach. The Dahlquist [4] test equations y′ = λy, 

y′′ = λ2y and y′′′ = λ3y, where λ ∈R, are applied on the matrix 

equation (21). By letting z = λh yield Yn+1 = M(z)Yn, where  

M(z) = (A1−z2B1−z3C1)−1.(A0+zD0+z2B0+z3C0), is the 

amplification matrix. The stability of the method can be 

analyzed based on the eigenvalues of this matrix. For m = 1, 

the spectral radius is given by 

 

 

( )
( )

5 4 3 2

5 4 3 2

332 4389 19065 119760 264600 264600

2 76 552 735 11170 132300

z z z z z
z

z z z z


+ − + − +
= −

− + − +
, 

 

For m = 2, the spectral radius is given by 

( )
( )

( )

7 6 5 4 3 2

7 6 5 4 2

501 11172 74924 1080180 5307120 20618640 44452800 44452800

3 39 396 560 12132 371280 14817600

z z z z z z z
z

z z z z z


+ − + − + − +
=

− + − + −
 

For m = 3, the spectral radius is given by 

( )
( )

( )

9 8 7 6 5 4 3 2

9 8 7 6 5 4 2

19 618 7254 88518 483336 1282968 1118880 57728160 304819200 304819200

3 14 4 966 1728 29304 594720 101606400

z z z z z z z z z
z

z z z z z z z


+ − + − + + − + −
= −

− − + − − − +

 

For the methods derived with m = 1, 2, 3, the stability 

regions are characterized by the spectral radii of their 

amplification matrices. By analyzing the values of these 

spectral radii across different values of z (representing 

complex eigenvalues of the amplification matrix), one can 

determine the stability behavior and the region in which the 

method remains stable. This information provides insights 

into the method’s suitability for solving stiff differential 

equations. The stability regions of these methods are shown 

in Fig. 1 to Fig. 3 
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Fig. 1: Method m =1, Stability region 

 

 

 

Fig.2: Method m =2, Stability region 

 

 

 

 

 

 
Fig. 3: Method m =3, Stability region 

 

A numerical method is said to be A-stable if its region of 

absolute stability contains the entire negative (left) complex 

half-plane C (see Lambert [5]). Based on the above analysis, 

all methods derived with m = 1,2,3 exhibit stability regions 

entirely contained within the left half-plane of the complex 

plane, indicating that these methods are A- stable.  

 

4    Implementation of Derived Methods 
The implementation process of the proposed methods is 

explained. The methods are effectively implemented as one-

step block numerical integrators for solving (1) and 

simultaneously obtaining the approximations 

(𝑦𝑛+𝑟 , … , 𝑦𝑛+1)𝜏, with n ranging from 0 to 𝑁 − 1, over non-

overlapping subintervals    0 1 1, ,..., , .N Nx x x x−
 

Step 1: Set N and 
( )b a

h
N

−
= , where h represents a constant 

step size and N > 0 is the partition integer. For n = 0, the values 

of (𝑦𝑟 , … , 𝑦1)𝜏  are simultaneously determined over the 

interval [𝑥0, 𝑥1] using the known value 𝑦0 from the initial 

value problem (1). 

Step 2: For n = 1, the values of (𝑦1+𝑟 , … , 𝑦2)𝜏 are 

simultaneously obtained over the interval [𝑥1, 𝑥2], with 𝑦1 

being known from the previous block. 

Step 3: The process continues for 𝑛 = 2, 3, … , 𝑁 − 1, 

obtaining approximate solutions for equation (1) over sub-

intervals [𝑥2, 𝑥3], … , [𝑥𝑁−1, 𝑥𝑁], given that these sub-intervals 

do not overlap. 

The derivations, analysis, and implementations of these 

methods were carried out using the Mathematica 13.0 edition 

programming language. Nonlinear problems were solved 

using the Find Root command, while linear problems were 

solved using the NSolve command in Mathematica. 
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Problem 1 
Consider the following non-linear stiff systems that have 

been solved, among others, by authors such as [1,9] 

  1

1
2 2

1 2

,
y

y
y y

−
 =

+
   ( )1 0 1,y =     ( )1 0 0,y =  

  2

2
2 2

1 2

,
y

y
y y

−
 =

+
   ( )2 0 0,y =     ( )2 0 1,y =  

The exact solution is given as y1(x) = cos(x) and y2(x) = sin(x). 

 

Problem 2 
Consider the non-linear stiff problem solved by [2,20] 

  y′′ = 2y3, y(1) = 1, y′(1) = −1. 

The exact solution is given as 𝑦(𝑥) =
1

𝑥
. 

Problem 3 
Consider the linear stiff problem solved by [18] 

  y′′ = −λ2y, y(0) = 1, y′(0) = 2, λ = 2. 

The exact solution is given as y(x) = cos(2x) + sin(2x). 

Problem 4 
Consider the non-linear IVP solved by [13] 

  y′′ = 50y3, y(1) = 
1

6
, y′(1) = −

5

36
. 

The exact solution is given as ( )
( )

1
.

1 5
y x

x
=

+
 

The problem is solved with step sizes of h = 0.1 and the true 

value at x = 1 + h is used as the second starting value. 

Problem 5 
Consider the linear IVP solved by [16] 

  y′′ = 8y′ − 17y, y(0) = −4, y′(0) = −1. 

The exact solution is given as y(x) = −4e4xcos(x) + 

15e4xsin(x). 

Problem 6 
Consider the systems of linear stiff IVP 

  ( ) ( )1 1 22 2 2 ,y y y = − + − ( )1 0 2y = , ( )1 0 0y =  

  ( ) ( )2 1 21 1 2 ,y y y = − + −  ( )2 0 1y = − , ( )2 0 0y =  

  with the exact solution y1(x) = 2 cos(x),  

y2(x) = −cos(x) and ϵ = 2500. 

5     Results and Discussion 
The numerical results obtained from applying the proposed 

methods to selected problems that have been previously used 

in published studies for numerical experimentation are 

presented. The aim is to demonstrate the enhanced accuracy 

of the proposed methods. 

Note: The new methods derived when m = 1,2,3 are also 

denoted as NMm1, NMm2, and NMm3 respectively. 

Table 2: Comparison of absolute y1 error for problem 1 
x Error y1 in [1] Error y1 in Error y1 in Error y1 in Error y1 in [10] 

  NMm1 NMm2 NMm3  

 p = 5 p = 5 p = 6 p = 7 p = 7 

 h = 0.01 h = 0.1 h = 0.1 h = 0.1 h = 0.1 

0.2 4.2086 × 10−11 4.6396 × 10−13 1.1100 × 10−16 0.0000 1.2700 × 10−16 

0.4 2.9457 × 10−10 2.7693 × 10−12 2.2200 × 10−16 1.1100 × 10−16 8.8900 × 10−16 

0.6 7.5965 × 10−10 8.1538 × 10−12 3.3310 × 10−16 5.5510 × 10−16 1.9300 × 10−16 

0.8 1.1786 × 10−9 1.7437 × 10−11 6.6610 × 10−16 8.8820 × 10−16 3.2800 × 10−15 

1 1.1803 × 10−9 3.0995 × 10−11 8.8820 × 10−16 1.2212 × 10−15 4.8000 × 10−15 
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Table 3: Comparison of absolute y2 error for problem 1 
x Error y2 in [1] Error y2 in Error y2 in Error y2 in Error y2 in [10] 

  NMm1 NMm2 NMm3  

 p = 5 p = 5 p = 6 p = 7 p = 7 

 h = 0.01 h = 0.1 h = 0.1 h = 0.1 h = 0.1 

0.2 3.1869 × 10−10 5.9011 × 10−12 2.7800 × 10−17 3.0000 × 10−17 2.5900 × 10−15 

0.4 1.0828 × 10−9 1.9233 × 10−11 5.5500 × 10−17 1.1100 × 10−16 4.9800 × 10−15 

0.6 1.7732 × 10−9 3.9016 × 10−11 0.0000 2.2200 × 10−16 6.9900 × 10−15 

0.8 1.8627 × 10−9 6.3924 × 10−11 2.2200 × 10−16 0.0000 8.4800 × 10−15 

1 1.0816 × 10−9 9.2521 × 10−11 2.2200 × 10−16 0.0000 9.3000 × 10−15 

The numerical results in Tables 2 and 3 demonstrate that the 

one-step optimized hybrid block method with m = 1 is more 

accurate than the one-step hybrid block method with three 

off-step points derived by Abdelrahim and Omar [1]. It’s 

worth noting that both the new methods m = 2,3 have better 

accuracy than the two-step hybrid block method in [10] 

which was developed with four equidistant off-step points

Table 4: Comparison of absolute errors for problem 2 using h = 0.1 
x Error in [20] Error in Error in Error in Error in [2] 

  NMm1 NMm2 NMm3  

 p = 5 p = 5 p = 6 p = 7 p = 8 

1.1 5.0300 × 10−7 7.0534 × 10−9 2.9766 × 10−12 3.4417 × 10−15 1.6603 × 10−10 

1.2 1.3900 × 10−6 1.8007 × 10−8 5.1502 × 10−12 5.7732 × 10−15 8.2396 × 10−10 

1.3 1.9720 × 10−6 3.1511 × 10−8 7.1743 × 10−12 7.7716 × 10−15 6.8322 × 10−7 

1.4 1.9670 × 10−4 4.7097 × 10−8 9.3027 × 10−12 9.9920 × 10−15 1.3895 × 10−6 

1.5   1.1649 × 10−11 1.2324 × 10−14 2.2801 × 10−6 

In Table 4, the new method derived when m = 1 exhibited 

better performance by enhancing the accuracy of the solution 

for the stiff problem compared to the three-step block method 

in Yakubu et al. [20] with only one off-step point at 

collocation. The newly derived methods with m = 2 and m = 

3 have outperformed the two-step third derivative hybrid 

block method in [2] which was derived with one off-step 

point at both the second and third derivative terms. 

Table 5: Comparison of absolute errors for problem 3 using h = 0.01 
x Error in [18] Error in Error in Error in 

  NMm1 NMm2 NMm3 

 p = 5 p = 5 p = 6 p = 7 

0.1 3.4090 × 10−11 2.2200 × 10−16 2.2200 × 10−16 2.2200 × 10−16 

0.2 3.2390 × 10−11 6.6610 × 10−16 1.9260 × 10−16 1.5490 × 10−16 

0.3 3.4650 × 10−11 1.1102 × 10−15 1.8390 × 10−16 1.0840 × 10−16 

0.4 2.4000 × 10−13 1.5543 × 10−15 3.1940 × 10−16 2.0620 × 10−16 

0.5 1.7800 × 10−12 1.9984 × 10−15 2.5500 × 10−16 1.0410 × 10−16 

0.6 7.4670 × 10−11 2.6645 × 10−15 2.0800 × 10−16 1.9600 × 10−17 

0.7 3.9040 × 10−11 3.3307 × 10−15 2.8630 × 10−16 6.0400 × 10−17 

0.8 4.1320 × 10−11 3.9968 × 10−15 2.3650 × 10−16 2.6900 × 10−17 

0.9 1.1970 × 10−10 4.4409 × 10−15 3.5600 × 10−16 5.5300 × 10−17 

1 8.3420 × 10−11 5.1070 × 10−15 2.5750 × 10−16 8.0400 × 10−17 
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Table 5 presents a comparison of absolute errors between the 

new method with m = 1 and the method proposed by Omole 

and Ogunware [18]. The table reveals a significant difference 

in the accuracy of the new method with m = 1 compared to 

the 3-step method with 2 off-step points. It is evident from 

Table 5 that the new method exhibits superior accuracy. The 

newly developed methods with m = 2 and m = 3 exhibit 

superior accuracy compared to the 3-step method presented 

in [18], which was derived with only 2 off-step points. This 

highlights the effectiveness of the additional off-step points 

incorporated into our methods and emphasizes their potential 

for achieving more accurate solutions to differential 

equations. 

Table 6: Comparison of absolute errors for problem 4 using h = 0.1 
x Error in [3] Error in Error in Error in 

  NMm1 NMm2 NMm3 

 P = 6 P = 5 P = 6 P = 7 

5 1.1325 × 10−5 3.2701 × 10−9 3.8123 × 10−13 1.8040 × 10−16 

10 4.2034 × 10−5 9.1569 × 10−9 8.5432 × 10−13 1.9430 × 10−16 

15 6.1478 × 10−4 1.7965 × 10−8 1.5879 × 10−12 1.3880 × 10−16 

20 9.0336 × 10−4 3.0482 × 10−8 2.6479 × 10−12 1.0410 × 10−16 

Table 6 presents a comparison of the new methods derived 

with m = 1,2,3 and the method developed by Shokri [3]. The 

results in Table 6 demonstrate that the new methods 

outperform the compared method in terms of accuracy. 

Table 7: Comparison of absolute errors for problem 5 using h = 0.01 
x Error in Error in Error of BhyNM3 in [16] Error in 

 NMm1 NMm2  NMm3 

 p = 5 p = 6 p = 6 p = 7 

0.1 6.5725 × 10−14 0.0000 2.1000 × 10−12 8.8820 × 10−16 

0.2 2.0490 × 10−13 1.7764 × 10−15 4.7000 × 10−12 9.2440 × 10−16 

0.3 4.2869 × 10−13 3.5527 × 10−15 7.1000 × 10−12 2.6146 × 10−15 

0.4 7.4299 × 10−13 7.5495 × 10−15 9.6000 × 10−12 2.3313 × 10−15 

0.5 1.1620 × 10−13 9.7700 × 10−15 1.2200 × 10−11 4.0373 × 10−15 

0.6 1.6936 × 10−12 1.4211 × 10−14 1.5100 × 10−11 4.5581 × 10−15 

0.7 2.3511 × 10−12 1.9096 × 10−14 1.8000 × 10−11 5.2496 × 10−15 

0.8 3.1481 × 10−12 2.3537 × 10−14 2.1100 × 10−11 6.9760 × 10−15 

0.9 4.0962 × 10−12 2.9310 × 10−14 2.4200 × 10−11 7.6462 × 10−15 

1 5.2121 × 10−12 3.5971 × 10−14 2.7600 × 10−11 9.1104 × 10−15 

The results in Table 7 demonstrate the superiority of the one-

step methods developed in this study, with m values of 1, 2, 

and 3, over the two-step method derived with three off-step 

points in [16]. This is noteworthy, especially considering that 

the method with m =1 achieves an order p of 5, while the m 

=2 method attains the same order p of 6. 
Table 8: Absolute error y1 for problem 6 using h = 0.1 

x Error y1 in Error y1 in Error y1 in 

 NMm1 NMm2 NMm3 

0.1 1.8408 × 10−13 8.6597 × 10−15 2.6645 × 10−15 

0.2 9.4969 × 10−13 3.5971 × 10−14 3.0198 × 10−14 

0.3 2.6710 × 10−12 7.7716 × 10−14 7.4385 × 10−14 

0.4 5.7079 × 10−12 1.3323 × 10−13 1.3900 × 10−13 

0.5 1.0403 × 10−11 2.0473 × 10−13 2.2205 × 10−13 

0.6 1.7055 × 10−11 2.9221 × 10−13 3.2552 × 10−13 

0.7 2.5924 × 10−11 3.9280 × 10−13 4.4542 × 10−13 

0.8 3.7225 × 10−11 4.9982 × 10−13 5.7310 × 10−13 

0.9 5.1122 × 10−11 6.1284 × 10−13 7.0921 × 10−13 

1 6.7726 × 10−11 7.3253 × 10−13 8.5443 × 10−13 

 



Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM), Vol. 17, No. 2, 2023 (125-140) 
 

139  

Table 9: Absolute error y2 for problem 6 using h = 0.1 
x Error y2 in Error y2 in Error y2 in 

 NMm1 NMm2 NMm3 

0.1 9.1704 × 10−14 4.7740 × 10−15 2.3315 × 10−15 

0.2 4.7618 × 10−13 1.9429 × 10−14 1.7764 × 10−14 

0.3 1.3372 × 10−12 4.0301 × 10−14 3.8747 × 10−14 

0.4 2.8543 × 10−12 6.7280 × 10−14 6.9944 × 10−14 

0.5 5.2013 × 10−12 1.0247 × 10−13 1.1124 × 10−13 

0.6 8.5281 × 10−12 1.4666 × 10−13 1.6420 × 10−13 

0.7 1.2963 × 10−11 1.9806 × 10−13 2.2504 × 10−13 

0.8 1.8613 × 10−11 2.5136 × 10−13 2.8788 × 10−13 

0.9 2.5561 × 10−11 3.0653 × 10−13 3.5416 × 10−13 

1 3.3863 × 10−11 3.6571 × 10−13 4.2688 × 10−13 

The absolute errors, as displayed in Tables 8 and 9, result 

from solving problem 6 using the recently developed methods 

with m values of 1, 2, and 3, all with a step length of h = 0.1. 

These tables effectively demonstrate the accuracy of the new 

methods, which is attributable to the meticulous selection of 

optimal points during the derivation process. 

 

6    Conclusion 

This paper presents a novel family of implicit one-step 

optimized third derivative hybrid block methods, designed 

for the direct solution of general second-order initial value 

problems (IVPs). The main goal of this study was to assess 

the accuracy and effectiveness of these methods in solving 

linear and nonlinear IVPs. Thus, because of the zero-stability 

and A-stability of these methods, it is suitable for solving stiff 

IVPs as well as non-stiff IVPs. Numerical simulations were 

conducted on both system and non-system stiff IVPs. It is 

evident from the study as indicated in Table 2 to Table 7 that 

the new methods give accurate results in a computationally 

efficient manner that performs better than the existing ones 

based on the results produced. The incorporation of 

optimization techniques has notably elevated both accuracy 

and stability in addressing differential equations. Therefore, 

it is concluded that these newly derived methods are 

computationally reliable in solving general second-order 

problems of the form in equation (1). The apparent success of 

these methods can be attributed to the use of the optimal 

points. This work contributes to the existing body of literature 

on optimization tools for solving linear and non-linear 

problems of IVPs. For further research, these methods shall 

be applied to the problems of electric circuits to investigate 

the efficiency and accuracy of the proposed methods which is 

the main requirement of such types of problems.  

Acknowledgments 

The author would like to express gratitude to the authors 

whose work has been cited and the reviewers who have 

improved the quality of this work. The author also appreciates 

the support from the management and staff of the University 

of KwaZulu-Natal and Ibrahim Badamasi Babangida 

University, Lapai Nigeria that led to the successful 

accomplishment of this research study.  

Conflict of Interest 

The author declares that there is no conflict of interest 

regarding the publication of this paper. 

References 
[1] Abdelrahim R. and Omar Z. Direct solution of second-order ordinary 

differential equation using a single-step hybrid block method of order 
five. Mathematical and Computational Applications, 21(2), 12, 2016. 

[2] Abderahim R., Omar Z., Ala’yed O. and Batiha B. Hybrid third 
derivative block method for the solution of general second order initial 
value problems with generalized one step point. European Journal of 
Pure and Applied Mathematics, 12(3), 2019; pp 1199–1214. 

[3] Shokri A. The symmetric p-stable hybrid obrenchkoff methods for the 
numerical solution of second order ivps. TWMS J. Pure Appl. Math, 
5(1), 2012. 

[4] Dahlquist G. G. A special stability problem for linear multistep 
methods. BIT Numerical Mathematics, 3(1), 1963; pp 27–43. 

[5] Lambert J. D. Numerical methods for ordinary differential systems. 
146. Wiley New York, 1991. 

[6] Lawal K. O, Yahaya Y. A. and Yakubu S. D. Four-step block method 
for solving third order ordinary differential equation. International 
Journal of Mathematics Trends and Technology, 57(5), 2018; pp 331–
344. 

[7] Li Q. and Wu X. A two-step explicit p-stable method for solving 
second-order initial value problems. Applied mathematics and 
computation, 138(2-3), 2003; pp 435–442. 

[8] Singh G. and Ramos H. An optimized two-step hybrid block method 
formulated in variable step size mode for integrating y^''=f(x,y,y^') 
numerically. Numer. Math. Theor. Meth. Appl, 12(2), 2019; pp 640–
660.  

[9] Olabode B. T. and Momoh A. L. Continuous hybrid multistep methods 
with Legendre basis function for direct treatment of second order stiff 
odes. American Journal of Computational and Applied Mathematics, 
6(2), 2016; pp 38–49. 

[10] Olabode B. T. and Momoh A. L. Chebyshev hybrid multistep method 
for directly solving second-order initial and boundary value problems. 
Journal of the Nigerian Mathematical Society, 39(1), 2020; pp 97–115. 

[11] Singla R., Singh G., Kanwar V. and Ramos H. Efficient adaptive step-
size formulation of an optimized two-step hybrid block method for 



Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM), Vol. 17, No. 2, 2023 (125-140) 
 

140  

directly solving general second-order initial-value problems. 
Computational and Applied Mathematics, 40(6):220, 2021. 

[12] Orakwelu M. G., Goqo S. and Motsa S. An optimized two-step block 
hybrid method with symmetric intra-step points for second-order initial 
value problems. Engineering Letters, 29(3), 2021; pp 948–956. 

[13] Ramos H., Kalogiratou Z, Monovasilis Th. and Simos T. E. An 
optimized two-step hybrid block method for solving general second 
order initial-value problems. Numerical Algorithms, 72, 2016; pp 
1089–1102. 

[14] Ramos H. and Singh G. Solving second-order two-point boundary 
value problems accurately by a third derivative hybrid block integrator. 
Applied Mathematics and Computation, 421:126960, 2022. 

[15] Rufai M. A. and Ramos H. One-step hybrid block method containing 
third derivatives and improving strategies for solving Bratu’s and 
Troesch’s problems. Numerical Mathematics: Theory, Methods & 
Applications, 13(4), 2020. 

[16] Awari Y. S. Some generalized two-step block hybrid numerov method 
for solving general second order ordinary differential equations 
without predictors. Science World Journal, 12(4), 2017; pp 12–18.  

[17] Obarhua F. O. An efficient two-step symmetric hybrid block method 
for solving second order initial value problems of ordinary differential 
equations. Int. J. of Res. and Sci. Innovation, 6:200, 2019. 

[18] Omole E. O. and Ogunware B. G. 3-point single hybrid block method 
(3pshbm) for direct solution of general second order initial value 
problem of ordinary differential equations. Journal of Scientific 
Research and Reports, 20(3), 2018; pp 1–11. 

[19] Skwame Y., Sabo J. and Mathew M. The treatment of second-order 
ordinary differential equations using equidistant one-step block hybrid. 
Asian Journal of Probability and Statistics, 5(3), 2019; pp 1–9. 

[20] Yakubu S. D., Yahaya Y. A. and Lawal K. O. 3-step block hybrid linear 
multistep methods for solution of special second order ordinary 
differential equations. Journal of the Nigerian Mathematical Society, 
40(2), 2021; pp 149–160. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

عائلة من طرائق التحسين المستقرة المهجنة من المشتقة الثالثة  

ذات الخطوة الواحدة لحل المسائل القيم الابتدائية العامة من  

 الرتبة الثانية 
 سعيدو داودو ياكوبو 

كلية الرياضيات والإحصاء وعلوم الكمبيوتر، جامعة كوازولو ناتال،  

 بيترماريتزبرج، جنوب أفريقيا 
saiduyakubu2014@gmail.com 

2023/11/6تاريخ القبول  2023/10/2تاريخ الاستلام   

لملخص ا  

عناصر من عائلة طرائق التحسين الأمثل للكتل  نقدم في هذا البحث  ثلاثة        

الهجينة المستقرة ذات الخطوة الواحدة لغرض حل مسائل القيم الابتدائية العامة 

من الدرجة الثانية، حيث يتم دمج منهجية التحسين في عملية الاشتقاق للحصول 

جميع  ان  أثبت  كما  الدقيق،  التحليل  خلال  من  وذلك  افضل  بشكل  الدقة   على 

لطرائق المشتقة كانت ذات استقرار صفري وثابتة )متسقة( ومستقرة ومتقاربة. ا

كما وقد تم التحقق من صحة تنفيذ هذه الطرائق المشتقة الحديثة من خلال التجارب 

العددية وقد أظهرت النتائج دقة فائقة مقارنة ببعض الطرائق العددية الحالية والتي 

ن ان كل طرق الكتلة الهجينة المحسنة من تم الكشف عنها في الدراسة، وقد تبي

المشتقة الثالثة والتي تم الحصول عليها حديثاً انها تمتلك ثوابت خطأ صغيرة جداً 

 .وذات دقة عالية

 .طريقة الاشتقاق الثالث الهجين الأمثلالكلمات المفتاحية:  


