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1 Introduction

In the realm of mathematics, numerical methods have
garnered increasing interest among mathematicians. This is
because everyday problems arising in fields such as science,
engineering, and technology among others are often
transformed into mathematical formulations. Many of these
problems lack analytical solutions, thus necessitating the
application of numerical techniques to approximate their
solutions. However, given that numerical methods are
essentially approximations of analytical solutions, it
becomes paramount to exercise caution during their
development to minimize the potential for significant errors
Notably, numerous researchers have previously devised
numerical methods for both specific and general second-
order initial value problems (IVPs) such as [16-20] among
others. For instance, Abdelrahim et al. [2] introduced a two-
step optimized hybrid third derivative block method with a
generalized one-off-step point. The optimal point was
situated at the function (f) and its derivative counterpart (g)
to develop an order P = 8 methods, rendering the method
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suitable for addressing general second-order IVPs. In the
work of Shokri [3], a two-step explicit symmetric P-stable
method was derived. This method incorporated the
Obrechkoff and hybrid terms of orders four and six,
specifically designed for solving second-order ordinary
differential equations (ODEs). The method presented by
Shokri represented an advancement over the approach
proposed by Li and Wu [7].

Furthermore, in the work of Olabode and Omole [9], a
continuous hybrid multistep method encompassing both one-
step and two-step approaches was developed to address
IVVPs. The one-step method utilized three equally spaced off-
step points, while the two-step method used two equally
spaced off-step points [9]. The utilization of Legendre
polynomials as basis functions facilitated the derivation of
discrete schemes from the continuous framework.
Additionally, Rufai and Ramos [15] developed an order P =
7, one-step hybrid block method that included a third
derivative term, and this approach was formulated using
three equally spaced off-step points at collocation, which
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proved effective for solving problems such as Bratu’s and
Troesch’s problems.

For a direct solution of I\VVPs, Abdelrahman and Omar [1]
developed an order P = 5 one-step hybrid block method.
This method utilized a power series polynomial as a basis
function and incorporated three random off-step points to
enhance its accuracy. In another approach, Olabode and
Momoh [10] derived a two-step Chebyshev hybrid
multistep method. This method utilized four equally spaced
off-step points and the Chebyshev polynomial of the first
kind as a basis function. The resulting method was tailored
for the direct solution of second-order 1\VPs and BVPs.

In the realm of accuracy enhancement, Ramos and Singh
[14] derived a two-step optimized third derivative hybrid
block method of order P = 7. This method utilized two off-
step points and was tailored for solving general second-
order BVPs. Singla et al. [11] developed an optimized two-
step hybrid block method of order P = 5. This method was
implemented in a variable step size mode for the solution of

methods, utilizing various optimal points, to address general
second-order IVPs. By incorporating optimization
techniques into our methodology, our primary aim is to
enhance the accuracy. The properties of the proposed
methods shall be analyzed such as zero-stability,
consistency, convergence, and linear stability. Numerical
experiments shall be conducted on the proposed one-step
optimized third derivative hybrid block methods. This
contribution is expected to significantly advance the field of
numerical techniques for effectively solving differential
equations. This paper is organized as follows: Section 2
describes the derivation of the proposed methods. Section 3
contains an analysis of the properties of the derived methods.
In section 4, the implementation is discussed and some
numerical examples are presented. Section 5 presents the
results and discussion. Finally, section 6 consists of a
conclusion and future recommendations.

2 Derivation of the Optimized Hybrid Methods

IVPs. An optimized two-step hybrid block method that
utilized two optimal points for the solution of 1VPs was
derived in [8,13]. Orakwelu et al. [12] developed an

This section outlines the procedure for deriving the members of
the one-step optimized third derivative hybrid block methods
designed for solving general second-order initial value problems,

optimized two-step block hybrid method with four
symmetric optimal points for the solution of I\VPs.

Hybrid methods are highly efficient and have been proposed
to circumvent the “Dahlquist zero-stability barrier”
condition and to improve the accuracy of the block methods.
Despite the hybrid block methods that were proposed by
some of these authors, inefficiency in terms of accuracy for
the solution of 1VPs was discovered among others. Due to
this, this study aims to improve on some of these setbacks.

The motivation behind this research is to develop a family
of one-step optimized third-derivative hybrid block

as given by

Y'(X)=fF (%Y. ¥).¥(%) =Y V(X)=Y @

Here, f eRis a sufficiently differentiable function

t

hat adheres to a Lipschitz condition.

The main objective is to derive algorithms of the form
given as

Y(x) = po ()Y + s 0)Yns1 + R [Ej=0 8§ (O frnj + 21§y () frapy + R E =065 (0) Gnej].J =01 ..(2)
where m is the number of off-step points. The
derivative of equation (2) is given in the form as
Y'(x) = % [0y + 11 ()Yns1 + B2 Bjoo i) frnj + R ZI1 i (O frapy + 12 Zjoo &1 () Gnsj] - (3)

to obtain additional equations. Let imposed that

To proceed with the derivation, let’s denote the step size
h=x,,4—x, for n=0,1,..,N —1 and approximate
the exact solution y(x) of equation (1) at the grid points

Y(X)=Y ()=

J

=0
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C.

J

(4

a=xy<x < <xy_1<xy = bintheinterval [a, b]
by a polynomial of degree M given as

(X_Xn)j’

...(5)
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v ()= (x)= Y (i-De, (-%)"%,

i=2

(0= ¥ (0= Y3 (02 (1), . )

j=3

where c; represents unknown coefficients to be determined,
M =t + u— 1 when t is the interpolation point and u denotes
the collocation points. These methods are derived by the
introduction of specific off-step points defined as x,,, = x,, +

p;h, where 0 < p; < 1 for i=1,2,..,m. These
off-step points are outlined in Table 1 where m is the number
of off-step points.

Table 1: Distribution of the off-step points

m Off-Step Points
1 r
2 rnl-r
1
3 T'E' 1-r

In Case I, when m = 1, equation (5) is interpolated at x =
Xnj for j = 0,1 and collocate equation (6) at x = x,,,; for

j = 0,r,1. Additionally, equation (7) is collocated at x =
Xn4j for j =0, 1. This can be expressed as follows:

Y(nsj) = ynijpi = 01,

Y (Xnt) = frrjif = 0,71,

Y"(%Xn4j) = Gnsjpd = 0,1.

The above expression is solved using Mathematica to obtain
the values of the unknown coefficients c;, where j =
0,1,2,..,t +u — 1. This process results in a system of t + u
equations with t + u unknowns. Subsequently, we substitute

the obtained solutions into equation (5) to yield the continuous
approximation equation in the form of (2). Equation (2) is
evaluated at x = x,,,, and equation (3) at x = x,,; for j =
0,r,1 to obtain the model equation, which is expressed as

R =D —1(r =318+ 7r(r —7(2r = ))))fy

Yn+r =

60r

+ (2R2r* — 4h%13 + K22 + K21 + h:) fryr

60(r — Dr

R2rarQRrr—=7r3+r2+7r+10) — 6)f,1 N
60(r—1)

(h3r7 — 5R37r% + 9n3r5 — 5R3r* — 3R313 + 4312 — h3r)g, N

60(r — Dr
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(h3r7 — 2h37r% + 2R313 — K312 gpyq + (—6073 + 12012 — 601)y,
60(r— r

+ TYn+1

R r2lr=2) - Df, h? fir h2((16 = 97)r — 6) fyis

hs, = -
m 6072 60(r — 1)2r2 60(r — 1)2

(=3h3r* + 7h3r3 — 5R3r?2 + K31) g, + (2R3 r* — 3h37r3 + h3r) g, 1
60(r — 1)2r2

(—60r* + 12073 — 60r?)y,
60(r — 1)2r2

+ Vn+1r

ho. . = R QRrr@@a —2)r—5) +20) —21) +2) + 1)f,
n+r — 607'2

+

(12R%r5 = 30h* + 20R%*13 — h))f,,, R2(rQ@B>F —4H)r +10)r3 + 9r — 16) + 6)fr1
60(r — 1)%r? 60(r — 1)?

N (3h3r® — 16h3r7 + 33h3r® — 30h3r5 + 7h3r* + 7h3r3 — 5h3r? + h31r)g,
60(r — 1)2r?

N (3h3r® — 8h3r7 4+ 5h3r® + 2h3r* — 3h37r3 + h31r?) g,4q
60(r — 1)2r2

(—60r* + 12073 — 60r?)y, N
60(r — 1)2r2 Int1,

R2(r(9r — 2) — Dfy h? fosr h?(r(21r —40) + 18)fn44
6072 60(r — 1)2r? 60(r — 1)2r?

hép4q =

N (2h3r* — 5R3r3 + 4h3r? — h3r)g, + (=3h3r* + 5373 — 2h3r?) g, 1
60(r — 1)2r2

(—60r*+120r3-6012)yy,

60(r—1)2r2 +:Vn+1' (8)
To achieve maximum accuracy, we examine the continuous local truncation error of 4dn+1 to determine the value of r. The
scheme hdn+1 based on the model equation and optimize the local truncation errors are given by
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4-7r)y" [x, 10’ N (3-2r(2+r))y?[x,]n®

L[ y(x.,);h =—( +0(h%)....0

[y(.)iM] 50400 86400 ()@

The coefficient of h”in equation (9) is set to zero to determine (8) (X ) he

the value of r, which is given as L[y(x 1);h]=y—n+0(h9), (1)
4 " 1411200

r= ? -+(10) Therefore, the derived implicit hybrid block method is

Substituting the value of r into equation (9), expressed as

the truncation error simplifies to

2
h [250965 f, +1124011f , + 4(26696f,,, +h(7407g, —636) gn+1)J
y - _ 7 + 3yn + 4yn+l
2 12101040 77
h? (2079fn +2401f 4 —160f,; +h(180g, + 48gn+1)>
7
h5n = - 8640 ~ Yn T Yn+1
h? (1229121fn +1523263f 4 — 1270624f,,1 + 4h(40563g, + 41844gn+1))
7
"ot = 864020744640 T F Ine
h2(351fn+2401fn+i+1568fn+1+h(36gn—96gn+1))
h6n+1 = : 8640 ~Ynt Vo4 - (12)
In Case I, where m = 2, equation (5) is interpolated at x = r, and equation (3) is evaluated at X =Xpqjforj=0,r,
xn+; for j =0, 1, and equation (6) is collocated at x = x,, 1 —r, 1. The value of r is determined by optimizing the local
for j =0, r, 1-r, 1. Also, equation (7) is collocated at x = truncation error of the continuous scheme Adn+1. The local
Xn4j for — j=0, 1. Following procedures similar to those in truncation errors are given as

Case I, equation (2) is evaluated at x = x,,; for j=r, 1 -

1ar-Dr+3)y®[x, 8 (16+75(=1+7)1)y (D [x,]°
Ly(tnsa); bl = = o o+ 0(R) ... (13)

To minimize the local truncation error, we set 14(r—1) r+3 =
0 in equation (13). The unique solution within the range

0<r<1—r<1isl’=i(7—ﬁ). .. (14)

By substituting the value of r into equation (13), the
truncation error becomes

(9) h°
L[y(xnﬂ);h]:—%+o(hm). ...(15)

The following system of method equations is obtained
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2
y o, = ((3478\/7 +9604) f, +215992f , , +13540f

- 1
n+§_ﬁ 3457440 +§_ﬁ n+ﬂ(\ﬁ+7)

+(9604—34787) 1. +3h((71ﬁ ~49)g, +(717 —49)) )

A

y {(3478\/7 ~9604) f, ~135240f | , —215092f

h?
1
+——= n+ﬁ(«/7 +7)

+L(77) 3457440 L

~(9604+34787) ., +3n((49+ 717 ) g, +(-49+ 717 ) 9,..)

Y (A P Y

14

n+-——= ) n+ﬂ(7+\/7)

2
h5n:_[—71fn—14<7+\/7)f L1 HIA(-TNT) S —3fn+1—3hgnJ—yn+yn+L
2 247

2
h {2(448\/7+853) f,-3640N7f , | —5712J7f , _+

ho =
il 105840 N (1)

AL
2(-853+4487) 1, , +3h((37 +347) g, +(37-347) gml)) Y+ Yo,

2
ho h ((1706—896\/7) f +571247F | |

nL(77) 105840 1o +3640J71

"ol 2(77)
~2(853+448V7 ) f,.. +3h((37—34ﬁ )g, +(37+347) gm))— Yot Yo
ho, ., = %[3 f, —14(—7+\/7) fn+1_3_ +14(7+\/7) fn+i(7+ﬁ) (16)
2 247 14
+71f,,, =300, )= Yo+ Vo

In Case I1l, where m = 3, equation (5) is interpolated at x = a similar pattern as in Case I. Equation (2) is evaluated at

Xpyj forj = 0,% ,and equation (6) is collocated at x = x,,. x = xpy; for j=r71-r1 and equation (3) is
. 1

for j=0, ré, 1 —r, 1. Additionally, equation (7) is evaluated at x = xp; forj = 0,7,2,1—7,1,

collocated at x = x,,, ; for j = 0, 1. The derivation follows g;lis leads to the corresponding local truncation error, given
(16(r-1)r+1)y®[x,]n° (7260(r-1)r+1217)[x,]n*

. — _ 11
LLy(xa)ih]= 25401600 52022476800 +o(n%)..an

To determine the value of r, let's set the coefficient of h%in O<r<ici—r<iis
equation (17) to zero. The unique solution within the range 2
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1
r:§(3_*/§) ... (18)
Substituting equation (18) into (17), the truncation error
simplifies to

y th
L|:y n+1 :|— W-FO(I’]M) . ...(19)

The block method equation can then be formulated in the
following form

Y. R 1( 51522)( 2h2((992+603J§) f, +9(1448+66513) .
+8(1528-46143)f , + 9(424-35943) f ) e

2

+(33143+176) f, , +h°((8-353) g, + (40+5143) gnﬂ))

1 1
+E Yn —5(\/5—3) yn%,

Y 36y 1451520(%2(( 817 +38943 )f +9(1501+ 78343 f ,

+,_
2

+8(2011+1989\3) f , +9(~547+783V3) f L
n+§ n-+—g +

~(817+15543) f,., +h*(~(113+433)g, +(113+11«/§)9n+1))

—%yn+%(«/§+3)ym;,

2
—__(26f,+1566f , , +3536f ,+1566f ,
26880 n+ E*W ”*E n+E(S+J§)

+26 fn+1 _Bh(gn - gn+l))_ Yo+ 2yn+11
2

yn+1

h2
hs, = 2342, -18(105+643)f , , —560f
” 26880{ 1 ~18(105+6473) L ol
+18(~105+644/3) foteny =B h(679,~30,.,))~2Y, + 2,5
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ho , | = L
n+§*ﬁ 241920

(th ((2213+70443) 1, +(7047-67203) f , |

2 23

+8(1989-14724/3) 1 , +3(2349-102443) f 1(3.45)
n+> e

+(-1079+ 7043} ., )+ 1*((245+96v/3) g, +(299-96+3) g, .

-2y, +2y ,,
n+5
h? N
he | = —286f +18(87+76+/3) f +3536 f
26880 " ( ) i e
+18(87-7613) fmg(wa) +338f,, —h(35g, + 29gn+1)]
-2y, +2y .,
n+E
h2
hs = 4426 -1408+/3) f, +6(2349+1024+/3) f
n+g(3+8) 241920(( ‘/_) n ( ‘/_) ik

+16(1989+14724/3) f , +6(2349+224043) f |,
2

n+g(3+J§)

_2(1979+ 704J§) f.+ h((245—96\/§) g, +(299+96\/§) gn+1))

_2yn + 2y 17
n+=
2
h2
hs,., = 901, +18(279-64V3)f | , +7632f |
26880 ”*5*@ N+
+18(279+644/3) fn+%(3+v’§) +2394f,,, ~h(3g, +61g,.,)) .- (20)
-2y, +2y ;.
n+=
2
3 Analysis of the Methods points are analyzed. Aspects such as order and error
In this section, the properties of the one-step optimized third constants, zero stability, consistency, convergence, and

are then reformulated into a matrix equation form, given as

AyYpi1 = AgYy + hDoA, + h2(BoFy, + By Fpyq) + h3(CoGp + C1Gpyq) ... (21)

Here, Ay, A4, By, B;,Cy,Ciand D, are  matrices  of Yni1 = Onipy Ynapys =0 Yntp Yne1) 5
coefficients, each with dimensions m x m. Additionally, the
vectors Yy, .1, Yn, Fy Fre1) Gny Grer and A, are defined as Fy = (Fapys Frmpyr = frmpmyr fn)
follows

— T
Yn - (yn—p1'yn—p2' ---'yn—pm'yn) ’ Fn+1 = (fn+p1!fn+p2! '"!fn+pm'fn+1)‘['
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Gp = (gn—plﬂ In—pyr - In-pmy gn)"

Gy = (gn+p1' In+pyr = In+ppy In+1)5
Ay= (Sn—pl' 8. , Sn—pm' 8,)"

n—py’ **

3.1 Order and Error Constants
Let's consider the linear difference operator £
associated with the developed optimized third-

L[y(xn); h] =

where y(x,) is a sufficiently differentiable function. By
expanding Equation (22) in terms of y(x, + jh),y'(x, +

derivative hybrid block method, which is given by

720 [y O + 1) = h&jy' Ce + jh) — h235y" (e + jH) — R3E59" (o + 1] ... (22)

jh), y"(x, + jh) and y"'(x, + jh) around x, and
collecting terms according to the powers of h, gives
LIy (en); k] = Coy () + Crhy' (x5) + C:h2y" (x) + =+ + CohPyP (x) + -+ ... (23)

Here, ¢; for j=10,1,2,..,N are vectors. A method is

considered to be of order p if €, = C; = C;, =+ = Cpyq =

0 and Cp,, # 0. The vector C,., is referred to as the error

constant.

The order and error constants of the derived m  off-step points
methods are presented as follows

For Case | when m = 1

we  have

For Case Il when m = 2, we have

2889 1 -1233 Ojr

T [1152960200 50400 ' 94119200
which indicates that the method has an order of p =5.

9 9 3 -3 !
CB - H i) 0) ] ) 0
172103680 172103680 " 3073280+/7 ' 307328047

and this implies that the method has an order of p = 6.
In Case 111, when m = 3, we obtain,

-1 1

c,-[o— 2% ! 0, , 1 ol
0405849603 ' 9405849603 ' 156764160 ' 92897280 ' 156764160

This results in the method having an order of p=7.

3.2 Zero Stability

Zero-stability is a critical property that determines the
stability of a numerical method. It can be analyzed from
equation (21) as the limit h — 0. In this limit, equation (21)
simplifies to

A Yne1 = Aoy ... (24)
The characteristic polynomial p(}) is defined by
p(A) = det [14; — A,]. ...(25)

By calculating the characteristic polynomials for the derived

133

methods with m =1, 2, 3, we find; for m = 1: p(1) = A(1 + ),
for m = 2: p(A) = 2%(1 + 2) and for m = 3: p(1) = 2(-1 + )43
A numerical method is considered zero-stable if the roots
i 1= 1,2,...,s of the characteristic polynomial p(1) satisfy
|4;|<1. For those roots with |A;|=1, their multiplicity must not
exceed the order of the differential equation being solved (see
Lawal et al. [6]). From the calculated characteristic
polynomials, it’s evident that all the derived methods satisfy
the condition for zero stability.
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3.3 Consistency

The Linear multistep method is considered consistent if it has
an order p > 1 (see Lambert [5]). In this context, all the
derived one-step optimized third derivative hybrid block
methods have an order p = m + 4 > 1. Here, m represents
the number of off-step points. Based on these results, it can
be concluded that the proposed methods are indeed
consistent.

3.4 Convergence

The convergence of the derived methods is determined by
analyzing their consistency and zero-stability. This analysis
is performed in accordance with Dahlquist’s theorem 3.1,
which provides the necessary conditions for the convergence
of numerical methods for solving differential equations.

Theorem 3.1 Convergence
The necessary and sufficient conditions for the Linear

multistep methods to be convergent are that they must be both
consistent and zero-stable. Given that all the methods also
meet the criteria for consistency and zero-stability, in
accordance with Dahlquist's theorem 3.1, it can be concluded
that these methods are convergent. This means that the
methods provide accurate numerical approximation and
converge to the true solution as the step size tends to zero.

3.5 Linear Stability

The stability region of a numerical method illustrates its
behavior in a complex plane. It can be determined through the
following approach. The Dahlquist [4] test equations y' = 1y,
y'= /% and y" = 2%, where A €R, are applied on the matrix
equation (21). By letting z = 24 yield Yni1 = M(2)Yn, where
M(Z) = (A1—2281—2301)71.(Ao+ZDo+ZZBo+ZSCo), is the
amplification matrix. The stability of the method can be
analyzed based on the eigenvalues of this matrix. For m =1,
the spectral radius is given by

~ 3327° +43897* -190652° +1197602° - 2646007 + 264600

pl2)=

For m = 2, the spectral radius is given by

2(7625 ~5527* +7357° ~111707° +132300)

(50127 +111722° - 749242° +1080180z* —53071202° + 206186402° — 44452800z + 44452800)

p(2)=

For m = 3, the spectral radius is given by

3(3927 —3962° +560z° —12132z* +3712802° —14817600)

(1929 +6182° 725427 +885182° - 4833362° +12829682* +1118880z° — 577281602 + 3048192002 —304819200)

p2)=-

For the methods derived with m = 1, 2, 3, the stability
regions are characterized by the spectral radii of their
amplification matrices. By analyzing the values of these
spectral radii across different values of z (representing
complex eigenvalues of the amplification matrix), one can
determine the stability behavior and the region in which the
method remains stable. This information provides insights
into the method’s suitability for solving stiff differential
equations. The stability regions of these methods are shown
in Fig. 1 to Fig. 3
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3(29 ~147° -47" +9662° -17282° - 29304z* - 5947207° +101606400)
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Fig. 1: Method m =1, Stability region

Fig.2: Method m =2, Stability region
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Fig. 3: Method m =3, Stability region

A numerical method is said to be A-stable if its region of
absolute stability contains the entire negative (left) complex
half-plane C (see Lambert [5]). Based on the above analysis,
all methods derived with m = 1,2,3 exhibit stability regions
entirely contained within the left half-plane of the complex
plane, indicating that these methods are A- stable.

4 Implementation of Derived Methods

The implementation process of the proposed methods is
explained. The methods are effectively implemented as one-
step block numerical integrators for solving (1) and
simultaneously obtaining the approximations
Vnars - Yna1)®, With n ranging from 0 to N — 1, over non-

overlapping subintervals [ Xy, X, |,....[Xy_1, Xy |-

b-a
Step 1: Set Nand h = (N—) , Where h represents a constant

step size and N > 0 is the partition integer. For n =0, the values
of (3, ...,¥1)* are simultaneously determined over the
interval [x,,x,] using the known value y, from the initial
value problem (1).

Step 2: For n = 1, the values of (y;4s,...,y,)" are
simultaneously obtained over the interval [x;,x,], with y;
being known from the previous block.

Step 3: The process continues for n=2,3,..,N—1,
obtaining approximate solutions for equation (1) over sub-
intervals [x,, x5], ..., [Xy—1, xx], given that these sub-intervals
do not overlap.

The derivations, analysis, and implementations of these
methods were carried out using the Mathematica 13.0 edition
programming language. Nonlinear problems were solved
using the Find Root command, while linear problems were
solved using the NSolve command in Mathematica.
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Problem 1

Consider the following non-linear stiff systems that have
been solved, among others, by authors such as [1,9]

" _yl

i = . %(0)=1 y/(0)=0,
e ,(0) /(0)
Y2 (0)=0, y(0)=1

Y, = ——, Y,
N

The exact solution is given as y1(x) = cos(x) and y2(x) = sin(x).

Problem 2
Consider the non-linear stiff problem solved by [2,20]

y'=2y%y1)=1,y()=-1.
The exact solution is given as y(x) = i

Problem 3
Consider the linear stiff problem solved by [18]

y'=-2%,y(0)=1,y(0)=2 i=2.

The exact solution is given as y(x) = cos(2x) + sin(2x).

Problem 4
Consider the non-linear I\VVP solved by [13]

"= B3 =lyvpn=-=
y =50y% y() =~ y() =—

1
(1+5x)’

The exact solution is given as y(x) =

The problem is solved with step sizes of h = 0.1 and the true
value at x = 1 + h is used as the second starting value.

Problem 5
Consider the linear 1\VVP solved by [16]

y'=8y — 17y, y(0)=—4,y(0)=—1.

The exact solution is given as y(x) = —4e®cos(x) +
15e*sin(x).

Problem 6
Consider the systems of linear stiff VP

yl"=(€—2)y1+(2€—2)y2, yl(0)=2, y{(O):O

¥, =(-€)y,+(1-2€)y, ¥,(0)=-1, y;(0)=0
with the exact solution y1(x) = 2 cos(x),
y2(X) = —cos(x) and ¢ = 2500.

5 Results and Discussion

The numerical results obtained from applying the proposed
methods to selected problems that have been previously used
in published studies for numerical experimentation are
presented. The aim is to demonstrate the enhanced accuracy
of the proposed methods.

Note: The new methods derived when m = 1,2,3 are also
denoted as NMm1, NMm2, and NMma3 respectively.

Table 2: Comparison of absolute y, error for problem 1

X Errory;in [1] Errory;in Errory;in Errory;in Error y;in [10]
NMm1 NMm2 NMm3

P=5 p=5 p=6 p=7 p=7

h=0.01 h=01 h=01 h=0.1 h=0.1
0.2 4.2086 x 107" 4.6396 x 107" 1.1100 x 10°'¢ 0.0000 1.2700 x 10°'
04 2.9457 x 1071° 2.7693 x 107" 2.2200 x 107" 1.1100 x 107!¢ 8.8900 x 1071
0.6 7.5965 x 107'° 8.1538 x 10" 3.3310x 107" 5.5510 x 10°'¢ 1.9300 x 10°'¢
0.8 1.1786 x 10~° 1.7437 x 107" 6.6610 x 107! 8.8820 x 107! 3.2800 x 107"*
1 1.1803 x 10°? 3.0995 x 107" 8.8820 x 107" 12212 x 107" 4.8000 x 10715
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Table 3: Comparison of absolute y, error for problem 1

X Error y,in [1] Error y,in Error y,in Errory,in Error y,in [10]
NMm1 NMm2 NMm3

pP=5 pP=5 p=6 p=7 p=7

h=0.01 h=01 h=0.1 h=01 h=0.1
0.2 3.1869 x 10°'° 5.9011 x 107" 2.7800 x 107" 3.0000 x 107" 2.5900 x 107"
04 1.0828 x 10°* 1.9233 x 107" 5.5500 x 107" 1.1100 x 10°'¢ 4.9800 x 107"
0.6 1.7732 x 10°7° 3.9016 x 107! 0.0000 2.2200 x 107'¢ 6.9900 x 107
0.8 1.8627 x 10°° 6.3924 x 107! 2.2200 x 107'¢ 0.0000 8.4800 x 107
1 1.0816 x 10°° 9.2521 x 107" 2.2200 x 107" 0.0000 9.3000 x 107"

The numerical results in Tables 2 and 3 demonstrate that the
one-step optimized hybrid block method with m =1 is more
accurate than the one-step hybrid block method with three
off-step points derived by Abdelrahim and Omar [1]. It’s

worth noting that both the new methods m = 2,3 have better
accuracy than the two-step hybrid block method in [10]
which was developed with four equidistant off-step points

Table 4: Comparison of absolute errors for problem 2 using h = 0.1

X Error in [20] Errorin Errorin Errorin Errorin [2]
NMm1 NMm2 NMm3
pP=5 pP=5 p=6 p=7 p=8
11 5.0300 x 1077 7.0534 x 10°° 2.9766 x 107! 34417 x 107" 1.6603 x 10°1°
1.2 1.3900 x 10°° 1.8007 x 10°% 5.1502 x 107'2 57732 x 107" 8.2396 x 10°1°
13 1.9720 x 10°° 3.1511 x10°® 7.1743 x 1072 7.7716 x 107" 6.8322 x 1077
14 1.9670 x 10°* 4.7097 x 10°® 9.3027 x 107" 9.9920 x 10°"* 1.3895 x 10°¢
15 1.1649 x 107" 1.2324 x 107 2.2801 x 10°®

In Table 4, the new method derived when m = 1 exhibited
better performance by enhancing the accuracy of the solution
for the stiff problem compared to the three-step block method
in Yakubu et al. [20] with only one off-step point at

collocation. The newly derived methods withm =2 and m =
3 have outperformed the two-step third derivative hybrid
block method in [2] which was derived with one off-step
point at both the second and third derivative terms.

Table 5: Comparison of absolute errors for problem 3 using h = 0.01

X Errorin [18] Errorin Errorin Errorin
NMm1 NMm2 NMm3
p=5 p=5 p=6 p=7

0.1 3.4090 x 107" 2.2200 x 107" 2.2200 x 107" 2.2200 x 107"
0.2 3.2390 x 107" 6.6610 x 107! 1.9260 x 107" 1.5490 x 107
0.3 3.4650 x 107" 1.1102 x 107" 1.8390 x 107" 1.0840 x 107
0.4 2.4000 x 107" 1.5543 x 10713 3.1940 x 10°'¢ 2.0620 x 107'°
0.5 1.7800 x 10°*2 1.9984 x 107 2.5500 x 10°'° 1.0410 x 107"
0.6 7.4670 x 107! 2.6645 x 107" 2.0800 x 107! 1.9600 x 107"
0.7 3.9040 x 107" 3.3307 x 107" 2.8630 x 107! 6.0400 x 107"
0.8 41320 x 107" 3.9968 x 10°'* 2.3650 x 10°'¢ 2.6900 x 107"
0.9 1.1970 x 10°'° 4.4409 x 10°"* 3.5600 x 107! 5.5300 x 107"
1 8.3420 x 107" 5.1070 x 10°"* 2.5750 x 1071 8.0400 x 107"
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Table 5 presents a comparison of absolute errors between the
new method with m = 1 and the method proposed by Omole
and Ogunware [18]. The table reveals a significant difference
in the accuracy of the new method with m = 1 compared to
the 3-step method with 2 off-step points. It is evident from
Table 5 that the new method exhibits superior accuracy. The
newly developed methods with m = 2 and m = 3 exhibit

superior accuracy compared to the 3-step method presented
in [18], which was derived with only 2 off-step points. This
highlights the effectiveness of the additional off-step points
incorporated into our methods and emphasizes their potential
for achieving more accurate solutions to differential
equations.

Table 6: Comparison of absolute errors for problem 4 using h = 0.1

X Error in [3] Errorin Errorin Errorin
NMm1 NMm2 NMm3
P=6 P=5 P=6 P=7
5 | 1.1325x10°° 3.2701 x 10 3.8123 x 107 1.8040 x 1076
10 | 4.2034x 107 9.1569 x 107 85432 x 107 1.9430 x 1076
15 | 6.1478 x 10 1.7965 x 10°® 1.5879 x 10712 1.3880 x 10716
20 | 9.0336x 10 3.0482 x 10°* 2.6479 x 10712 1.0410 x 10716

Table 6 presents a comparison of the new methods derived results in Table 6 demonstrate that the new methods

with m = 1,2,3 and the method developed by Shokri [3]. The

outperform the compared method in terms of accuracy.

Table 7: Comparison of absolute errors for problem 5 using h = 0.01

X Errorin Errorin Error of BhyNM3 in [16] Errorin
NMm1 NMm2 NMm3
p=5 p=6 p=6 p=7

0.1 6.5725 x 107 0.0000 2.1000 x 10712 8.8820 x 10°'°
0.2 2.0490 x 10713 1.7764 x 107" 4.7000 x 107" 9.2440 x 107!
0.3 4.2869 x 107" 3.5527 x 107" 7.1000 x 10712 2.6146 x 107"
0.4 7.4299 x 10713 7.5495 x 1071 9.6000 x 10°'? 2.3313x 107"
0.5 1.1620 x 10713 9.7700 x 10°"* 1.2200 x 107" 40373 x 107"
0.6 1.6936 x 10712 1.4211 x 107 1.5100 x 107" 45581 x 107"
0.7 2.3511 x 107" 1.9096 x 10~ 1.8000 x 107" 5.2496 x 10°"*
0.8 3.1481 x 1072 2.3537 x 107 2.1100 x 107" 6.9760 x 107"
0.9 4.0962 x 107" 2.9310 x 107 2.4200 x 107" 7.6462 x 107"
1 52121 x 10712 35971 x 10" 2.7600 x 107" 9.1104 x 107"

The results in Table 7 demonstrate the superiority of the one-
step methods developed in this study, with m values of 1, 2,
and 3, over the two-step method derived with three off-step

points in [16]. This is noteworthy, especially considering that
the method with m =1 achieves an order p of 5, while the m
=2 method attains the same order p of 6.

Table 8: Absolute error y, for problem 6 using h = 0.1

X Errory;in Errory;in Errory;in
NMm1 NMmz2 NMm3

0.1 1.8408 x 10713 8.6597 x 107" 2.6645 x 107"
0.2 9.4969 x 107" 3.5971 x 107 3.0198 x 107
0.3 2.6710 x 1072 7.7716 x 1074 7.4385 x 1074
0.4 5.7079 x 1072 1.3323x 107" 1.3900 x 10"
0.5 1.0403 x 107" 2.0473 x 107" 2.2205x 10713
0.6 1.7055 x 107! 29221 x 107" 3.2552 x 107"
0.7 2.5924 x 107" 3.9280 x 107" 4.4542 x 107"
0.8 3.7225 x 107" 49982 x 10713 57310 x 1073
0.9 5.1122 x 107! 6.1284 x 10713 7.0921 x 10713

1 6.7726 x 107" 7.3253 x 10713 8.5443 x 107"
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Table 9: Absolute error y, for problem 6 using h = 0.1

X Error y,in Error y,in Error y,in
NMm1 NMm2 NMm3

01 9.1704 x 107 47740 x 107" 2.3315x 107"
0.2 47618 x 10713 1.9429 x 1074 1.7764 x 107
0.3 1.3372 x 10712 40301 x 1074 3.8747 x 1074
04 2.8543 x 107" 6.7280 x 10" 6.9944 x 104
05 5.2013 x 107" 1.0247 x 107" 11124 x 107
0.6 8.5281 x 1072 1.4666 x 107" 1.6420 x 10713
0.7 1.2963 x 107! 1.9806 x 107" 2.2504 x 107"
0.8 1.8613 x 10! 25136 x 10°"* 2.8788 x 107"
0.9 2.5561 x 107" 3.0653 x 107" 3.5416 x 10"

1 3.3863 x 107! 3.6571x 1071 4.2688 x 10713

The absolute errors, as displayed in Tables 8 and 9, result
from solving problem 6 using the recently developed methods
with m values of 1, 2, and 3, all with a step length of h =0.1.
These tables effectively demonstrate the accuracy of the new
methods, which is attributable to the meticulous selection of
optimal points during the derivation process.

6 Conclusion

This paper presents a novel family of implicit one-step
optimized third derivative hybrid block methods, designed
for the direct solution of general second-order initial value
problems (IVPs). The main goal of this study was to assess
the accuracy and effectiveness of these methods in solving
linear and nonlinear IVPs. Thus, because of the zero-stability
and A-stability of these methods, it is suitable for solving stiff
IVPs as well as non-stiff I\VPs. Numerical simulations were
conducted on both system and non-system stiff I\VPs. It is
evident from the study as indicated in Table 2 to Table 7 that
the new methods give accurate results in a computationally
efficient manner that performs better than the existing ones
based on the results produced. The incorporation of
optimization techniques has notably elevated both accuracy
and stability in addressing differential equations. Therefore,
it is concluded that these newly derived methods are
computationally reliable in solving general second-order
problems of the form in equation (1). The apparent success of
these methods can be attributed to the use of the optimal
points. This work contributes to the existing body of literature
on optimization tools for solving linear and non-linear
problems of IVPs. For further research, these methods shall
be applied to the problems of electric circuits to investigate
the efficiency and accuracy of the proposed methods which is
the main requirement of such types of problems.

Acknowledgments

The author would like to express gratitude to the authors
whose work has been cited and the reviewers who have
improved the quality of this work. The author also appreciates
the support from the management and staff of the University

139

of KwaZulu-Natal and Ibrahim Badamasi Babangida
University, Lapai Nigeria that led to the successful
accomplishment of this research study.

Conflict of Interest
The author declares that there is no conflict of interest
regarding the publication of this paper.

References

[1] Abdelrahim R. and Omar Z. Direct solution of second-order ordinary
differential equation using a single-step hybrid block method of order
five. Mathematical and Computational Applications, 21(2), 12, 2016.

Abderahim R., Omar Z., Ala’yed O. and Batiha B. Hybrid third
derivative block method for the solution of general second order initial
value problems with generalized one step point. European Journal of
Pure and Applied Mathematics, 12(3), 2019; pp 1199-1214.

Shokri A. The symmetric p-stable hybrid obrenchkoff methods for the
numerical solution of second order ivps. TWMS J. Pure Appl. Math,
5(1), 2012.

Dahlquist G. G. A special stability problem for linear multistep
methods. BIT Numerical Mathematics, 3(1), 1963; pp 27-43.

Lambert J. D. Numerical methods for ordinary differential systems.
146. Wiley New York, 1991.

Lawal K. O, Yahaya Y. A. and Yakubu S. D. Four-step block method
for solving third order ordinary differential equation. International
Journal of Mathematics Trends and Technology, 57(5), 2018; pp 331-
344.

Li Q. and Wu X. A two-step explicit p-stable method for solving
second-order initial value problems. Applied mathematics and
computation, 138(2-3), 2003; pp 435-442.

Singh G. and Ramos H. An optimized two-step hybrid block method
formulated in variable step size mode for integrating y~"=f(x,y,y"\")
numerically. Numer. Math. Theor. Meth. Appl, 12(2), 2019; pp 640—
660.

Olabode B. T. and Momoh A. L. Continuous hybrid multistep methods
with Legendre basis function for direct treatment of second order stiff
odes. American Journal of Computational and Applied Mathematics,
6(2), 2016; pp 38-49.

Olabode B. T. and Momoh A. L. Chebyshev hybrid multistep method
for directly solving second-order initial and boundary value problems.
Journal of the Nigerian Mathematical Society, 39(1), 2020; pp 97-115.

[11] SinglaR., Singh G., Kanwar V. and Ramos H. Efficient adaptive step-
size formulation of an optimized two-step hybrid block method for

(2]

(3]

(4]
(5]
(6]

[7]

(8]

(9]

[10]



Al-Rafidain Journal of Computer Sciences and Mathematics (RJICM), Vol. 17, No. 2, 2023 (125-140)

directly solving general second-order initial-value problems.
Computational and Applied Mathematics, 40(6):220, 2021.

Orakwelu M. G., Gogo S. and Motsa S. An optimized two-step block
hybrid method with symmetric intra-step points for second-order initial
value problems. Engineering Letters, 29(3), 2021; pp 948-956.

Ramos H., Kalogiratou Z, Monovasilis Th. and Simos T. E. An
optimized two-step hybrid block method for solving general second
order initial-value problems. Numerical Algorithms, 72, 2016; pp
1089-1102.

Ramos H. and Singh G. Solving second-order two-point boundary
value problems accurately by a third derivative hybrid block integrator.
Applied Mathematics and Computation, 421:126960, 2022.

Rufai M. A. and Ramos H. One-step hybrid block method containing
third derivatives and improving strategies for solving Bratu’s and
Troesch’s problems. Numerical Mathematics: Theory, Methods &
Applications, 13(4), 2020.

Awari Y. S. Some generalized two-step block hybrid numerov method
for solving general second order ordinary differential equations
without predictors. Science World Journal, 12(4), 2017; pp 12-18.

[17] Obarhua F. O. An efficient two-step symmetric hybrid block method
for solving second order initial value problems of ordinary differential
equations. Int. J. of Res. and Sci. Innovation, 6:200, 2019.

Omole E. O. and Ogunware B. G. 3-point single hybrid block method
(3pshbm) for direct solution of general second order initial value
problem of ordinary differential equations. Journal of Scientific
Research and Reports, 20(3), 2018; pp 1-11.

Skwame Y., Sabo J. and Mathew M. The treatment of second-order
ordinary differential equations using equidistant one-step block hybrid.
Asian Journal of Probability and Statistics, 5(3), 2019; pp 1-9.
Yakubu S. D., Yahaya Y. A. and Lawal K. O. 3-step block hybrid linear
multistep methods for solution of special second order ordinary
differential equations. Journal of the Nigerian Mathematical Society,
40(2), 2021; pp 149-160.

[12]

[13]

[14]

[15]

[16]

[18]

[19]

[20]

140

JENY Aiial) (e Aagall 5 jSieeall Cppeatl) 3k (e dlile
Cra dalad) daiy) Al Jilewall Jad Bas) gl) B ghadd) <l
Al 4,0
$155 9390 g
(UL o3931 88 dnala ¢ 5 gasl) pgle g pluan) g clbadaly ) 408
L8 gl o e i
saiduyakubu2014@gmail.com
6/11/2023 S g )5 2/10/2023 pdaa¥) G
sadlall

G el Cppanll 330 5l Alle (e pualic 4300 Caad) 138 b aais
Aalad) 2000V asll Jiliia Ja i pad Bas) 5l 6 sladdl <l 3 8l Aiiagll
Jsanll GEEY) Blee & ) dingia zad oy Cum AGEH A ) (g
e o Ol LS (@aall didadl) A e @l Jumdl (S5 48N e
Aol 58 jiiune 5 (Aiie) A3 5 (5 jha )il cld S AELEA (331 k)
) O e Al Adidial) (351 Lall o38 285 Anin (e (38T 3 08 5 LeS
s Allad) panal) 331 Ll ey 5 Hlie Aok A8y il < jedal 28 5 3p00a)
O Lnenal) D)) ALY G5,k JS o) o 85 sl A Lgie il o
Tan 5 i Uad il 5 Gl L) B Lgle J gemnll o3 ) 5 230D 2l
Adlle 28y culd
LY Cpagdl CEN BlERaY) A% e sdualidal) cilalsl)



