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ABSTRACT

Let R be a commutative ring with identity. We associate a graph I'(R). In this
paper, we find Hosoya polynomial and Wiener index of T'(Zn), with n=p™ or n= p™g,
where p and g are distinct prime numbers and m is an integer with m>2.
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1. Introduction

Let R be a commutative ring with identity, and let Z(R) be the set of all zero-
divisors in R, and Z*(R) is the set of all non-zero zero-divisors in it. We associate a
simple graph T'(R) to R with vertices Z(R), and for two distinct vertices x,yeZ (R),
there is an edge connecting x and y if and only if xy= 0.

The notion of a zero divisor graph of a commutative ring was first introduced in
1988 by Beck in [5], where he was interesting in colorings. This investigation of
coloring of a commutative ring was then continued by Anderson and Naseer in [3], and
further Anderson and Livingston in [2] associate a graph I'(R) to R. The principal ideal
of an R is an ideal that is generated by one element of R, say a, and usually denoted by
(a). The ring R is called local ring if it contains exactly one maximal ideal.

A graph G is said to be connected [6] if there is a path between any two distinct
vertices of G. For vertices x and y of G, let d(x, y) be the length of a shortest path from
X to y. The diameter of G is defined by diam(G)= max{d(x,y) : x,y € V(G)}, where
V(G) is the set of all vertices of G. A graph is complete if every two of its vertices are
adjacent, so the complete graph of order n is denoted by Kn. The complement K,, of the
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complete graph K, has n vertices and no edges, and is referred to as the empty graph of
order n. The subsets V1 ,V2, ... ,\Vy, r > 2, are called r-partite of the set V(G), if Vi is

non empty, and the intersection between Vjand V;j is empty forany 1 < i,j < r with
i# j, so that Uj_, V; = V(G).

Hosoya polynomial of the graph G is defined by : H(G ; x) = Zﬁfén(G)d(G, K)xK,
where d(G, k) is the number of pairs of vertices of a graph G that are at distance k apart,
for k=0,1,2, ..., diam(G). The Wiener index of G is defined as the sum of all distances
between vertices of the graph, and denoted by W(G), and we can find this index by
differentiating Hosoya polynomial for the given distance with respect to x and putting x
=1. See [7, 9].

As usual we shall assume that p and q are distinct positive prime numbers and m
be an integer with m>2. In [1] Ahmadi and Nezhad proved some results concerning the
Wiener index of I'(Zn) , where n = p?, pg and p?g. In this paper we extended these
results to n=p™, p"q .

2. Hosoya Polynomial and Wiener Index of T'(Zpm)

In this section, we find the Hosoya polynomial and the Wiener index of I'(Zpm). It
is clear that Z*(Z,m)= (p )\{ 0 }={ p. 2p, 3p, . . ., (pP™ ' —1) p}, so we have
| Z*(Zym) |= p™~* —1. We shall begin this section with the following lemma :

Lemma 2.1 [8, Lemma 2.1.] : Let Z, be a ring of integers modulo n. Then, the number
of all non-zero zero-divisors for k|n are % -1.

Theorem 2.2 : T(Z3) = Kp_q + K2y .
Proof : Since p is a prime number, then it is clear that the ring Z s is a local ring, so we
have Z'(Z,s)=(p)\{0}={kp:k=123,...,p°~1}.
Now, we can classify Z*(Zpa) into the two disjoint subsets as follows :
A= (p?)\{ 0}, and Ao= (p )\ { A1u{ 0 3}}. It is clear that Z*(Z,3)=A1U Az and

by using Lemma 2.1 we have |A1|:§—Z—1:p—1,and|A2|:%3—(g—z—1+1):

p? — p, so we can write Ai={kip?: ki=1,2,...,p—1} and Ax={kop: k=1,2,....p>—1 ; pt
k,}.
Now, let X,y € Z*(Zps). Then, there are three cases :
Case 1: If x,y€ A1, then there exists positive integers ki and kz with p + ki,kz2 such that
x=ki1p? and y= k2 p?, and we have

xy= k1 p? k2 p? = ki ka2 p* = 0 (mod p®), then x adjacent with y in this case .
Case 2: If xe A1 and ye Az, then there exists positive integers ki and kz with p + ki,kz
such that x = k1 p?, and y = k2 p, and we have

xy =ki1p? k2 p = ki k2 p® = 0 ( mod p®), then x adjacent with y in this case .
Case 3: If x,y€ Ao, then there exists positive integers ki and k2 with p t kg,k2 such that
x=kip and y=kap, and we have xy =ki p ka2 p = ki k2 p? % 0 ( mod p3), then x and y are
not adjacent in this case.

From the previous, we see that every vertex in Az is adjacent with any other vertex
in Ar and A2, so that no vertex in Az is adjacent with any other vertex in Ay, therefore
we have : F(Zp3) = K|A1| + K|A2| = Kp_1 + sz_p -
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Theorem 2.3: H(I'(Z,3);x) = a0+ a1 X + a2 X%, where ag = p> — 1, a1 = % (2p-3p?—p
+2), and az:%(p4—2p3 +p).
Proof : From clearly that diam(F(Zps)): d(x,y)= 2, for all x,y €A, , therefore
H(I(Z,2),%) = a0 + a1 X + a2 x?, where ai = d(I'(Zz), i ) for i= 0,1,2. It is clear that ao =
d(T(Zy),0) = Z°(Zy) | = p*- 1.
Now, let Z'(Z,3)= AwU Az, where A= (p? )\{ 0 } and Az= (p )\{ A1U{ 0 }} and by
Lemma 2.1 we have, |A;|=p — 1, and |A,|= p?—p.

To find ay, let x,ye Z*(sz) such that d(x,y)= 1, from the proof of Theorem 2.2 we
get that d(x,y)= 1 ifand only if X,y € Arorxe Arand Y€ Az, then we have :

a=d(0(Zy) , D)= (4 + 1AL 1Az = (°51) + (0 — D)(? - p)= 5 (2 p°-3p? -
p+2).

To find a2, let x,y€e Z*(sz) such that d(x,y)=2, from the proof of Theorem 2.2, we
have d(x,y)= 2 if and only if Xx,yeA,, then we have :

e )2 () (F57) 2250
Corollary 2.4 : W(T(Z,z) ) = % (2p*— 2p°—3p? +p + 2).
Proof : Since W(T(Z,3) ) = %H(F(Zps); x) |x=1, then we have  W(T'(Z,2))= 0 + % @

pP—3p?—p+2)+2X G (p* - 20 + P))| x=1
=~ (2p*-2p°-3p* +p+2) . m
Next, we give the following definition .

Definition 2.5 : Let Z,m be the ring of integers modulo p™. Then we can write Z*(Zym)=
UZ1' A;, where A are disjoint subsets of Z'(Z,m), for 1< i < m—1, which are defined
as follows :

A= (P\{0}, Az= (p™H)\ {A1U{03}, As= (p™)\ {A1UAU{0}}, . . .,

Am1= (D\{ {UZ1* A3U{0}}.

Notice that, from Lemma 2.1, we get

|A;|=p'—p"t,forany 1< i < m— 1, so that we can write

Ai={kip™ : ki=1,2,....p' —1; pt k;}, forany 1< i<m-1.
Lemma 2.6 : Let A, for 1< i<m-—1 be subsets of Z*(Z,m) which are defined in
Definition 2.5 and let s and t are two integers with 1<s<t<m— 1, then Yi_ | A;| =
pt_ ps-ll
Proof : Since, | A; | =p'—=p"5, V1< i < m— 1, then we have

foA; ljzptfjséfl _.pl—l): o5 — il 4+ ptt — ps 4.+ ptl — pt2 + pt —pt?
Theorem 2.7 : Let A, for 1< i<m-—1, be subsets of Z*(Z,m) which are defined in
Definition 2.5. Then, for any x,y€ Z*(Z,m), xy = 0 if and only if x€A; and y€A; such
that i + j< m, for some 1<1i,j <m-1.
Proof : From Definition 2.5 we have Z*(Z,m)= UP7'A;, where A ={ki p™':
ki=1,2,....,p'—1 ; pt k;}, for 1< i <m—1. Now, for any 1< i,j <m-1, let x€ Aj and
y€A,. Then, there exists two positive integers ki and k; such that x= ki p™' and y = kj p™
I with p t KiK.
Now, if xy=0. Then, xy = ki p™ k; p™ = ki kj p>™(*) = 0 ( mod p™), and since

kikj Z 0 ( mod p™), therefore p™(*) = 0 ( mod p™), and that means p™ divides p?™ (),
which implies that 2m—(i+j) = m, therefore i + j< m.
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Conversely: Let xe Ai and ye Aj such that i + j<m for some 1< i,j <m-1, and
suppose contrary that xy=0 = xy= ki kj p?™(*) = 0 ( mod p™) , and since, p t kiK; ,
therefore p™ + p?™ () Then, we get 2m—(i+j) < m, so that 2m — m < i+j, which
implies that i+j > m, this contradiction, therefore xy=0 . m

From Theorem 2.7 and Lemma 2.6 we can give the general form of the graph
[(Z,t), where t=4,5 , as the following :

- R

Name of subset : Ay

The form of its vertices : kyp?

Any vertex in Ay is adjacent with
every other vertices in Ay
|A]=p-1.

!he graph form of it K(g-q) /
F N 4 N

Name of subset : A, Name of subset : A

The form of its vertices: ky p? B OF its vertices : kyp

Any vertex in A, is adjacent with i i !
Any vertex in A; is not adjacent

with any other vertices in A; .
|As|= p* —p?.

\The graph form of it : K(pz_p) ) . - - T( -
\Egrap orm of i o -p) /

every other vertices in A; |
|Az]=p*-p.

Figure 2.1 : The general form of the graph I'(Z ,+) = K1) + (Kp*-p) U Kp*-p%))

Figure 2.2 Figure 2.3
The general form of the graph I'(Z,+) The general form of the graph I'(Z ,s)

We can now give the general form of the graph I'(Zym) :
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Figure 2.5 : The general form of the graph I'(Z,m), where m is an odd number with m=7 .

Theorem 2.8 : The graph I'(Z,m ) is s-partite graph, where
m-—1
S_{p 2 ; if m is an odd number

p? —1 ; ifmisaneven number
Proof : From Definition 2.5, we have Z*(Z,m)= U21" A;, where Ai={kip™ ki=1,2,...
p'—=1;ptk} fori<i<m-1.
Suppose that m is an odd number, we see that by Theorem 2.7, any two distinct

m-—1

vertices lie in UZAi are adjacent because that i + j< m, forany 1<i,j < mT_l , this

means that, we cannot put the vertices of the sets A1, A2, ..., Am-1 in less than
2
m-1 m-1
2.2 1Al =p 2 — 1 of partite sets. also by Theorem 2.7 we see that any vertex Xe
m-—1

Am+1 is adjacent with every vertex of Uz A; because that mT“ +i<m,forany 1<i<
m-1
2

2
therefore we must consider new partite set, say V, contains the vertices of Am+1 , in this

2
m-1

case, we cannot put the vertices of the sets A1, A2, ..., Am+1,inlessthan (p z —
2

, SO that x is not adjacent with any other vertex in Am+1 because that 2(m7+1) >m,

51



Husam Q. Mohammad and Mohammad N. Authman

m-—1
1)+1=p z of partite sets. Now, if we can put the vertices of U:‘;;}j A; inV, then the
2

theorem hold, that is : by Theorem 2.7 we see that any two distinct vertices in
U msa A; are not adjacent because that i+j > m for any mTH <i,j <m— 1, so that

2

any vertex in V is not adjacent with every vertex of U?_‘Eﬁfs A; because that mTH +i>
=2

m, for any mTH < i< m — 1, and this shows that we cannot put the vertices of

m-1 m-—1
Z*(Zpym) = URT'A; inlessthan p z of partite sets, therefore I'(Z,m) is p 2 -partite
graph.
Now let m be an even integer number similarly we cannot put the vertices of the

set U2 ; in less than Z Al = p2 —1 of partite sets, say Vi,V2,...,V m L each of
pZ-

these partite sets contains only one vertex of the set Ui?=1 A;, suppose that the partite set
Vm 1(:ontains one of the vertices of the set Am, and we are going to show that we can
pz-— 2
put the vertices of the set Uinl;nl-q-z A; in the partite set V. m X that is : by Theorem 2.7
—m+2z pz-

2

we see that any two distinct vertices in the set Ui“j?niz A; are not adjacent because that
=72

i+j>m for any mT” <i,J<m-—1, sothat any vertex of the set U?;;nlei Is not
2

adjacent with every vertex of the set Am because that 9 +i>n for any m—+2 <i<m-
2

1, and this shows we can put the vertices of the set U m+2A in the partlte setV m N
pz-

therefore we cannot put the vertices of Z*(Z,m)= U{L‘llAi in less than p2 —1 of partite

sets, hence I'(Z,m) is (pz — 1)-partite graph. m

Lemma2.9[7]: Let G be a connected graph of order r. Then

S d(G,i)= 21 (r+1).
Now, we glve the main result in this section.

Theorem 2.10: H(T(Z,m); x)= a0+ a1 X + a2 X%, where

ao=pmt-1,

aL = %[(m—l) p"—m pm? —p[?J + 2], and

2= [ P~ (m-1) p +(m-3) p™ + plz ]

Proof : When m= 2, we have I'(Z,2) 2 Kp.1, and the theorem is true in this case.
Now, suppose that m=3, since Z,m is a local ring, then by [4,

Theorem 2.3.], there is a vertex adjacent with every other vertices in F(me), this means
that diam(I'(Z,m ))= 2, therefore H(T'(Zpm ); x)= a0+ a1 X + a2 X2, where ai= d(TI'(Zpm) , i

), fori=0,1,2.
To find ao, by Lemma 2.1 we have
=d([(Zym),0)=|Z"(Zm) |= —-1=p™'-1

To find ag, suppose that m be an odd number, and let x,y € Z*(Z,m), since
Z*(Zpm)= U27" A;, then by Theorem 2.7 we see that d(x,y)=1 (i.e. xy=0) if and only if
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x€Ai and yeAjsuch that i + j< m, for some 1<1i,j <m-1, and this holds if
and only if one of the following two cases holds :

Casel: 1<i,j< mT_l because that i+j<m forany 1 <i,j < mT_l in this case there
are my edges where

= (2;1 |Ai|>: <pT—1>: 1 (me_l —1) (me_l —-2) ...(%.
2 2

Case2 1 <i <— and mTH<j < m —i, since that i+j<m forany 1 <i ST_l
an — i, in this case there are m, edges where

Mmo= Z 1(|A |me+1|A D), since | Aj|=p'-p't, foreach 1< i < m—1,and by
using Lemma 2.6 we get:

m1

ms= le(p—p1 1)(pm‘—p2) s
=35 P - D™ -y =35 (- D™ —p TR
—Zl L p™ip—-1) - p T (- 1)2_1

m-1
_m-1 1

=== p™1(p—1) —p 2 (p 1) 21 1 p!, and since {p} 21 is a geometric sequence,
k+1_
therefore we can use Y%, a =22 where a be any real number and k is any positive
integer, hence we have : mz = mz * pm- p—1) - p 2 (p 1)
m+1
p 2 -p
(p-1)

m

=P p-D-pe (-1 (),
Now, from (*) and (**), We get

m-1 m-—1 m-1

al—m1+m2——(p2 —1)(p2 —2)"‘ ml(p—l) pz(pz -1
== [(m-1) p" —mpm— s +2],
Similarly, when an m be an even number we get that 3.1:%

[(m—1) p"—m p™'—p +2].
Hence a:= %[(m—l) p™—m pm! —pl?l +2].
Next, to find a2 we shall use lemma 2.9, and we get :
do= % ao (at+l) —ao—ax
= % (P™ = 1) p™l— (p™_1) — %[(m—l) p™ —m p™? —pl%] +2]
=] pAD— (m-1) p" +(m-3) gL+ plz] ] . m
Corollary 2.11: W(I(Zym))= 1 [2 pA™I—(m—1) p"+(m—6) p™+plz] +2] .

3. Hosoya Polynomial and Wiener Index of T'(Zymg).

In this section, we find the Hosoya polynomial and the Wiener index of
['(Zpmg). First, we shall give the following lemma :

53



Husam Q. Mohammad and Mohammad N. Authman

Lemma 3.1 : The number of all non-zero zero-divisors of a ring Zymg is

(p+q—1)p™~' —1.
Proof : Since, p and q are distinct prime numbers, then clearly
Z(R)= (p)u(q), therefore Z*(R)= {(p)u(@)} \{0} .
Now, let xe Z"(R), then either xe(p) or xe(q) with x&(pq), so by Lemma 2.1 we
get:
* v — (P4 p™q p™q
ZRECET -+ -)-CF -1
=™ -1+ (" -1) - (p™ - 1)
- pm—lq -1+ pm -1 - pm—1+1
=(p+tq-1)p" ' -1. m
Definition 3.2 : Let Z,m, be the ring of integers modulo p™gq, then we can write :
Z"(Zym)= UiL,(B; U C;), where B and C;, are disjoint subsets of Z*(Z,mq) ,for 1<i<
m, which are defined as follows :
B1= (p™'9)\{0}, B2= (p™q)\{B1 U{0}},
Bs= (0™ q)\ {B1UB2U{0}},.. .,
Bm= (a)\{{UZ1" B;}u{0}}, and
C1=(p™\{0}, Co=(p™*)\{B1UC1U{0},
Ca=(p™?)\{B1UC1UB,UCU{0}}, . . .,
Cn = (p) \{{URT(B; U C)} U{0}}.
Notice that, by Lemma 2.1 we get :
| B; | =p'—p", forany1 < i < m,|C, |=(g—1) and | C; |=(p"*—p"?)(q—1) , for all
2< i < m, also we can write :
Bi={kip™q : ki=1,2,....p' =1; pt k;},and Ci={kip™"**: ki=1,2,..., p" q —1; qt k;},
forany 1<i<m.
Remarks :
(1) X1, 0 B; | =p"- 1.
() Xm0 G | =p™ (- 1).
(3) |1 C; |=(q—1) | Bi—; |, forany 2<i < m.
(4) | A; 1= 1By |, forany 1< i < m-—1, where A; ,for all 1< i < m-—1, be subsets of
Z*(Zpm) which are defined in Definition 2.5 .
Lemma 3.3 : LetBiand Ci, for all 1<i<m, be subsets of Z*(Z,mq) which are defined
in Definition 3.2 then :
1- If sand tare two integers with 1<s < t < m, then Y!_ | B; |= p'-p*™.
2- Iftbe an integer with 1< t < m, then ¥1_,| C; |= (g-1) p**.
3- If sandt are two integers with 2<s < t < m, then Y!_(| C; |= (9-1)(p"* - p*?).

Proof : By the same method of a proof of Lemma 2.6 . m

Theorem 3.4: LetBiand Ci, for 1 < i < m, be subsets of Z*(Z,my) which are defined
in Definition 3.2, and let X,y € Z*(Z,mq). Then, xy= 0 if and only if either x€ Bi and ye
Bj with i+] <m, or xe Bj and ye Cj with i+j<m+1, forsome 1 <i,j < m.

Proof : From the Definition 3.2, we have Z*(Z,mq)= UiZ,(B; U C;). Now, letx,y €
Z*(Z,mgq) such that xy= 0, since x,y € UiZ,(B; U C;), then there are two cases :

Case 1 : xe Bj and ye B; for some 1 < i,j < m, in this case, there are positive integers
ki and k; with ptki, kj, such that x=k; p™'q and y=k; p™q , for some 1 <i,j < m, since
xy=0 by hypothesis, then we get xy=(ki kj)p?™(*)g? = 0 (mod p™q), since pitki, k; ,
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therefore p?™(*) g2 = 0 (mod p™q), this means that p>™(*) is divisible by p™.
Therefore 2m-(i+j) =m, hence i+j <m.
Case 2 : xe Bj, and ye Cj for some 1 < i,j < m, in this case, there are positive integers
ki and kj with piki and gtk;, such that x= kip™'q and y= kjp™*!, for some 1 < i,j < m,
since xy=0 by hypothesis, then xy= (ki k))p?™*)*1 q = 0 (mod p™q), Since ptki and
qtk;, therefore p?™(*) q = 0 (mod p™q), this means that p>™(*) is divisible by p™,
therefore 2m-(i+j)+1 =m, hence i+j <m+1.
Finally, we see that when xe Cj and ye Cj, then xy= 0 forany 1 <i,j < m.

From previous, we get that if xy= 0, then either x€ B; and ye€ Bj with i+j <m , or
X€ Bjand ye Cj with i+j <m+1, forsome 1 <i,j <m.
Conversely : Let xe Bj and ye Bj for some 1 <i,j < m, such that i+j <m, and suppose
contrary that xy= 0,we get xy= (ki kj)p>™*)g? = 0 (mod p™q), since ptki, kj and q

divides g then

contradiction, therefore must be xy=0.
Now, let xe Bi and ye C;j for some 1 <i,j < m, such that i+j <m+1, and
suppose contrary that xy= 0 ,we get
D+ g 2 0 (mod p™q), and since ptki and gtk then p?™*)* js not divisible by p™,
therefore 2m-(i+j)+1<m = i+j>m+1, also this is a contradiction, therefore must be

xy=0. m

p?™() js not divisible by p™, therefore 2m-(i+j)<m = i+j>m, this

xy= (ki ky)p*™

From Theorem 3.4 and Lemma 3.3, we can give the general form of the
graph I'(Z,¢4), where t=3,4 , as follows :

s N

Name of subset : By
The form of its vertices : kyp?q

Any vertex in B, is adjacent with

4 W

Name of subset : B,

The form of its vertices : k; pq

every other vertices in By
IBy|=p-1.

(he graph form of it : K(p_l) /

Any vertex in B, is not adjacent
with any other vertices in B,
1B;|=p?-p.

(he graph formof it : : K (pz_ p)/

4 N

Name of subset : B3
The form of its vertices : k3 q
Any vertex in Br is not adjacent

with any other vertices in Br .
1Bs|=p*-p?

\The graph form of it : R(ps _pz) /

————

4 A

Name of subset : Cy
The form of its vertices : k; p?

Any vertex in C; is not adjacent
with any other vertices in C; |
1€1]=(a-1).

The graph form of it : K(q.l)

\ 4

~ ™

Name of subset : C;
The form of its vertices : k, p?

Any vertex in C, is not adjacent
with any other vertices in C,.
1C;1=(q-1)(p-1).

Name of subset : C3
The form of its vertices : ks p

Any vertex in C3 is not adjacent
with any other vertices in C3

1Bs]=(a-1)(p"~p) -

Qle graph form of it : K(q.1)(p_1) j
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Figure 3.2 : The general form of the graph I'(Z

pq)

We can now give the general form of the graph I'(Zym,), as the following :
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Figure 3.4 : The general form of the graph I'(Zym4), where m is an even number with m=6.

Lemma 3.5 [8, Proposition 3.2.] : Let Zymg be a ring of integers modulo p™q. Then,
diam(T'(Zpmg))= 3.

Now, we give the main result in this section.

Theorem 3.6: H(I'(Zymg); X) = a0+ a1 X + a2 x>+ az X%, where

a0 = (p+q—1)p™* -1,

ai=2[2mg (p-1)—(m+1) p+m] pmt — 2 plzl 4 1,

2= (p? + G2 —1) p™2 + 2 [(m—4) p~2(m—1) pg +m—5)g - m +5] p™ + 1 plz], and
as=(q—1)(p—1) (p™*=p™").

Proof : By Lemma 3.5 we have diam(I'(Z,mq)) = 3, then H(F(meq); X)=ap+arX+az
x?+ a3 x*, where ai= d(I'(Z,mq) , i), fori=0,1,2,3.

To find a0, by Lemma 3.3 we have

0= d(T'(Zpmq) , 0)= |Z°(Zymy) |= (p+q—1) p™~1 —1.

Now, to find as, let X,y € Z*(Zymq) such that d(x,y)=1 (i.e. xy=0), hence by using
Theorem 3.4 there are two cases :
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Case 1 : xe Bj and ye B;j with i+j < m, for some 1<i,j<m, the same as the proof of
Theorem 2.7, we get that there are m1 edges in this case, where

mi= 2 [m-1) pm—mpmt —plal + 21 L. (%)

Case 2 : xe Bj and ye Cj with i+j < m+1, for some 1<i,j<m, this holds if and only if
1<i<mand 1< j<m-i+l, because that i+ < m+1forany  1<i<mand 1<

j <m—i+1, so that i+j>m+1 in otherwise of this case , so that there are m; edges, where
mz= X, (1B 227G ), and since |B;|= (p'—p'™*) for 1< i <m, then by Lemma 3.3,

we get that _ _ _ _
mz=Y2(p' —p Hp™ 1 (q-1) =X p" N (p - Dp™ (- 1)
=Y2.(p—1D(@-1)pm™! =m(p-D(@-Dp™t...(**)

Now, from ( * ) and ( ** ), we get that
ar=mytmz =2 (m=1) pm—2m pmi- 1pll + 14 m pm = pm1) (g - 1)
1

=2mpr—2pm — Impm— 2plel 4 14 mpng — m prom pig +mpm

=1 [ 2mq (p—1)~(m+1) p+m] p™ — L plzl+ 1
Now, to find a;, for i=2,3 ,in the first, we shall find as.

Let X,y € Z*(Zpmq) such that d(x,y)=3, then x€ Bi and ye C; for some 1<i,j<m,
in this case, we see that d(x,y)=3 if and only if i=m and 2< j <m, because that d(X,y)<
2 forany 1<i<m-1and 2<j <m, also that d(x,y)=1 for 1< i <m and j=1, therefore
the number of pairs of vertices that are distance three apart is (|B,| zj“;2|cj |), i.e.
a3= |Bpy| 22,| G|, since [By|= (p™ —p™™), then by Lemma 3.3, we get that :
as=(p"—p™)(q—1) (p™*— 1) = (q—1)(p—1) (p*™*—p™).

Now, to find a2 we shall use lemma 2.9, that is :
a= % ao (at+l) —ag—ar—as = % a (ap—1)—ai—as

== ((p+q—1) p™1 —1) ((p+q—1) p™ —2) — [5 (2mq (p—1)—(Mm+1) p + m) p™*
- 2pBl+ 11— @-1-D) (pme-pmy

=1 (2 + o —1) P + 2 [(m—4) p-2(m—1) pa +(2m—5) g~ m +5] p™ 1+ 2 pl3] . m
Corollary 3.7 : W('(Zymq))= [p? + 6+ 3(pg—p—q) + 2] p*™2 +~[(m — 3)p -

2(m+1) pa + 2(m-2)q ] p™ + 2 plil + 1.
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