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ABSTRACT

Let R be a commutative ring with identity and AG(R) be the set of ideals with
non-zero annihilators. The annihilating ideal graph AG(R) is a graph of vertex set
AG (R)\{(0)} and two distinct ideal vertices | and J are adjacent if and only if 1] =
(0). In this paper , we establish a new fundamental properties of AG(R) as well as its
connection with I'(R).
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1. Introduction:

Let R be a commutative ring with identity , and let Z(R) be its set of zero divisors.
We associate a simple graph I'(R) to R with vertices Z"(R)=Z(R)\{(0)} , the set of all
non-zero zero divisors of R, and for distinct x,y €Z(R) , the vertices x and y are
adjacent if and only if xy=0. Thus , T'(R) is empty graph iff R is an integral domain.

Beck introduced the concept of zero divisor graph of a commutative ring in [4]. In
the recent years zero divisor graph have been extensively studied by many authors in
[1,2,3,8].

An ideal | of R is said to be annihilating ideal if there exists a non-trivial ideal J of
R such that | J=(0). Let AG(R) be the set of annihilating ideals of R. The annihilating
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ideal graph AG(R) is a graph with vertex set AG"(R)=AG(R)\{(0)} such that there is an
edge between vertices | and J if and only if I+ ] and 1] = (0). The idea of
annihilating ideal graph was introduced by Behboodi and Rakeei in [5] and [6].

In the present paper , we investigate the annihilating ideal graph AG(R). We
establish a new of its basic properties and its relation of T'(R).

Recall that:

1. Ris called reduced if R has no non-zero nilpotent element.

2.The distance d(u,v) between two vertices u and v of a connected graph T is the
minimum of the lengths of the u—v paths of I' [7].

3. The degree of the vertex a in the graph I is the number of edges of I incident with a

[7].

4. The graph T is called a plane graph if it can be drawn in the plane with their edges

crossing. A graph which is an isomorphic to a plane graph is called a planer graph[7].

5. A graph T is bipartite graph , if it is possible to partition the vertex set of I" into two

subsets V1 and V2 such that every element of edges of T joins a vertex of Vi to a

vertex of V2. A complete bipartite graph with partite sets V1 and V2 where , |V;|=m and

|V,|=n, is then denoted by Kmn[7].

2. Annihilating ideal graph:
In this section , we consider annihilating ideal graph, we give some of its basic
properties and provide some examples.

Definition2.1[5]: Let R be a ring and let I and J are distinct non-trivial ideals of R.Then
, I and J are adjacent ideal vertices in AG(R) if 1J=(0).

From now on , we shall use the symbol I—] to denote for two adjacent ideal
vertices | and J. We start this section with the following example .

Examplel: Let Z,4 be the ring of integers modulo 24. The graph AG(Z24) can be drawn
as follows:
(6)
3) —®) 4)
(2) (12)
The following result is an easy consequence of definition of 2.1.

Lemma2.2: If | andJ are non-trivial ideals of R suchthat I nJ = (0) , then I—] is an
edge of AG(R) and I U ] €Z(R).

The converse of Lemma2.2 is not true in general, as the following example
shows.

Example2: Let Z1» be the ring of integers modulo 12.Then , (2)
of the graph AG(Z12) , but (2) n (6) # (0).
We now give a sufficient condition for the converse of Lemma2.2 to be true.

(6) is an edge

Proposition2.3: Let R be a reduced ring , and let I—] be an edge in AG(R).
Then,InjJ = (0).
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Proof: Leta € InJ. Then,a € I and a € ], this implies that a®> € I ] = (0), so a’=
0. Since, R is areduced ring , then a=0. Therefore, I NnJ = (0). m

The next result illustrates that the distance of any two nilpotent ideal vertices of
AG(R) is at most 2.

Theorem2.4: Let | and J be two ideal vertices of AG(R). If either I or J is a nilpotent ,
then d(1,J)<2.

Proof: Let d(1,J)=3. Then, there is a path from I to J in AG(R) say [—K— L—]. Let I
be a nilpotent ideal of R. Then , there exists an integer n>1 such that 1"=(0). Consider
the sequence L , LI, LI%..., LI". Let m be the smallest integer in which LI™+ (0).
Hence , LI™!= (0). Obviously , LI™ adjacent to both | and J. This contradict the fact
that d(1,J)=3. Therefore , d(1,J)<2. m

The next result illustrates the degree of a vertex adjacent to the set of zero
divisors of R.

Proposition2.5: Let R be a finite ring and let Z(R) be an ideal of R. If I—Z(R) is an
edge in AG(R) , then deg(l)=|AG(R)|-1.

Proof: Suppose that I— Z(R) be an edge in AG(R) , it follows that I-Z(R)= (0). Let J
be any vertex of AG(R).Then , by Lemma2.2 , J is a subset of Z(R). This implies that
I-J=(0).Thus, I is adjacent to all vertices of AG(R).This means that deg(l)=|AG(R)|-
lm

Example3: Let Zi6 be the ring of integers modulo 16. The vertices of AG(Z;¢) are
1=(8)

,J=(4) and K=(2)=Z(Z¢). Clearly deg(l)= deg(J)= |AG(Z;¢)|=3-1.

|

J K

The next result considers the adjacency of two minimal ideals in the graph AG(R).

Proposition2.6: Every two distinct minimal ideals of R are adjacent in AG(R).
Proof: Let M and N be two distinct minimal ideals of R. Since , M and N contain MN ,
then MN=M=N or MN=(0). The first case is not true because M and N are distinct
ideals. Thus , MN=(0). This means that M and N are adjacent vertices in AG(R). m

3) (6)

Example4: Let Zig be the ring of integers modulo 18.

(9) (2)
Clearly , the minimal ideals of Zigare (6) and (9) , which are adjacent vertices in
AG(Z1s).

The next result considers the number of minimal ideals of R .
Theorem2.7: If AG(R) is a planar graph , then R has at most four minimal ideals.

Proof: Suppose that R has five minimal ideals say M1 , M2 , Mz, M4 and Ms. By
Proposition2.6 , any two of M1, M2, M3, M4 and Ms are adjacent. This means that
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AG(R) contains the complete graph Ks. This is contradiction that AG(R) is a planar
graph (See the Kuratowsky Theorem in [7]). Therefore, R has at most four minimal
ideals. m

Example5: Let Z16 be the ring of integers modulo 16. (2) (8)
Clearly, the graph AG(Zss) is a planar graph and the (4
only minimal ideal of Zss s (8).

3. Thegraphs I'(R) and AG(R)

In this section, we consider the relationship between I'(R) and AG(R).

It is natural to ask whether I'(R) and AG(R) are isomorphic , the answer is
negative , as the following example shows.

Example6: Let Zi1, be the ring of integer modulo 12. Then, the number of vertices of
I'(Z12) is 7 , while the number of vertices of AG(Z,,) is 4. Obviously, I'(Z;,) and
AG(Z,,) are not isomorphic.

The next result explores the relation between the set of zero divisors of R and the
vertices of AG(R).

Theorem3.1: For any ring R, Z(R)=U {I: 1 is an ideal vertex of AG(R)}.
Proof: Let 0#x€e Z(R). Then, there exists ye Z*(R) such that xy=0.This implies that
(X)(y)= (0). If (xX)=R ,then x is a unit element. This contradicts the fact that xe Z*(R).
So, (X)#R. Since (x) is adjacent to (y), then xe(x)€
{I:1is an ideal vertex of AG(R)}. Therefore, x€U {I:1 is an ideal vertex of AG(R)}.
Conversely , suppose that x €U {I: I is an ideal vertex of AG(R)} .Then, x € I for some
vertex | of AG(R). By Lemma2.2,xe Z(R).Hence, Z(R)=U {I: I is a vertex of AG(R)}.
|

Let us give the following easy result.

Proposition3.2: Let I'(R) and AG(R) are finite graphs , then |I'(R) | = |AG(R)|.
The following result demonstrates the isomorphism between I'(R) and AG(R) by
considering R=Zp.

Theorem3.3: Let n>1 be a non-prime integer. Then, I'(Z,) contains a subgraph which
isomorphic with AG(Z,).
Proof: Define the graph G by G={a— b:a— b isanedgeinT(Z,),a|n,bln and
a # b}. Obviously, G is a subgraph of I'(Z,,). Now, define a function f: G - AG(Z, )by
f(a)=(a) , with a € G. Clearly f is onto. Now, for any distinct vertices a,b € G, ajn
and bjn . So, f(a) = (a) # (b) = f(b). Thus, f is one to one. Now, suppose that a— b
is an edge in G. Then, ab = 0, so (a)(b)=(0). This shows that f(a) f(b) = (0) , and
hence f(a)— f(b) is an edge in AG(Z,). Thus f preserves the adjacency property.
This proves that G = AG(Z,). m

The following result gives a sufficient conditions for two vertices of I'(R) such
that their annihilators are adjacent ideal vertices in AG(R).

Theorem3.4: If a and b are two vertices in I'(R) such that d(a,b)=3, then Ann(a) and
Ann(b) are adjacent ideal vertices in AG(R).
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Proof: Since, a,b € Z*(R), then both Ann(a) and Ann(b) are non-zero. On the other
hand , d(a,b)=3. This means that neither be Ann(a) nor a € Ann(b). Then, neither
Ann(a)=R nor Ann(b)=R. So, both Ann(a) and Ann(b) are nontrivial ideals. If we
assume that Ann(a)Ann(b)# (0) , then there exists ceAnn(a) and deAnn(b) such that
cd= 0. Clearly a(cd)=b(cd)=0. This means that a—cd—b is a path in I'(R).This
contradicts the fact that d(a,b)=3.Therefore, Ann(a) and Ann(b) are adjacent ideal
vertices in AG(R). m

Example7: Let Zi» be the ring of integers modulo 12. Clearly , d((3),(10))=3 in
AG(Z12) and Ann(3)Ann(10)=(4)(6)=(0).This means that Ann(3) and Ann(10) are
adjacent in AG(Z12).

We end this paper by showing that,

Proposition3.5: If R is a finite local ring , then AG(R) # K,,,,, for any integers m,n>1.
Proof: Suppose that AG(R) = K,,,for some integers m,n>1, and let A={ly,1>,...,In} and
B={J1,J2,....Jm} be the partition of AG(R) . Since, R is a local ring , then by
Theorem1.2 in [9], Z(R) is an ideal of R and there exists a vertex a of I'(R) such that
a-Z(R)=(0). It follows that (a) -Z(R)=(0). Hence, Z(R) is a vertex of AG(R) , yielding
Z(R)EA or (R)€B . Now, if (R) €A , then J Z(R)=(0) for all i=1,2,...,m.By
Theorem3.1, Ji Jk=(0) for i=k. This contradicts the fact that Ji and Jx are not adjacent.
If (R) € B, this will lead to a contradiction. Thus, AG(R) # K,,, for any integers
m,n>1. m
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