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ABSTRACT
The recent measure function of Byrd and Nocedal [3] is considered and

simple proofs of some its properties are given. It is then shown that the AL-
Bayati (1991) formulae satisfy a least change property with respect to this new
measure .The new formula has any extended positive definite matrix of
Brouden Type-Updates.
Keywords: Quasi-Newton method, Some theoretical result for quasi-Newton
formulae.
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1.Introduction.
Recently Byrd and Nocedal [3] introduced the measure

function¥ : R™™ — R defined by

Y(A) =trace(A)— f(A) (1.1
where f (A)denotes the function

f(A)=In(det A) e @.2)

Byrd and Nocedal use this function to unify and extend certain
convergence results for Quasi-Newton methods. In this paper, simple proofs
of some of the properties of these functions are given. These properties give
a new variaional result for the AL-Bayati updating formulae [1] .
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Lemmal.l. f(A)is a strictly concave function on the set of positive
definite diagonal n*n matrices.

Proof. Let A=diag(a;). Then V*f =diag(-1/a’)and is negative definite
since a, > Ofor all i. Hence f is strictly concave [7].

Lemmal.2. f (A)is a strictly concave function on the set of positive definite

symmetric n*n matrices.
Proof. Let A= Bbe any two such matrices. Then there exist n*n matrices

Xand A(Xis nonsingular, A =diag(4)) such that X'AX = Aand

XTBX =1.

Denote C=(1-60)A+6B,0 (0,1).

Then

XTCX =(1-OX"AX + X" BX =(1—O)A+A oo e, 1.3)
Also

f(XTAX) = Indet(X " AX) = In(det® X det A) = f(A) + Indet® X.,.......(1.4)
and likewise

F(XTBX) = f(B)+INAEt? X oot e ettt e centnseas seven, (1.5
FXTCX) = F(C)+INAEL? X oo et et et cererinns e (1.6)

Now A=B < A #1,s0 by Lemma 1.1 and Eq.(1.3) it follows for
6 < (0,1) that

f(XTCX) = f(A-O)A+A = 1-0)F(A)+& (1) = (1L—0) f (XTAX) + & (X" BX).
Hence form (1.4) — (1.6),

f(C)>(@1-0)f(A)+¢ (B),
and so the Lemma is established [5].

Lemma.3. W(A) is a strictly convex function on the set positive definite

symmetric n*n matrices.
Proof. This follows from Lemma 1.2 and linearity of trace( A) [5].

Lemmal.4. For nonsingular A the derivative of det(A) is given by
d(detA)/da; =[AT], detA

Proof. From the the well-known identity det(l +uv')=1+v'uit follows
that

det(oA+ cee] ) =det(l + goe,e] A™)det pA= (1+p(A™) ;) det pA .

Hence
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det( pA + ee,e] ) —det pA
daij &0 &g

Theoreml1.1. w(A)is globally and uniquely minimized by A=1 over the

set of positive definite symmetric n*n matrices .

Proof. Because A is nonsingular , w is continuously differentiable and so
dy 1 d T
— =1 - —det PA=(1 —pA 7 )i, e e 1.7
da, 1 detpAda, 7 (I=pA7); (1.7)
using Lemma 1.4. Hence wis stationary when A=1and the theorem
follows by virtue of Lemma 1.3.

Remark. It is also shown in [3] that A= 1 is a global minimizer of (A) .
2.A variational result . The Al-Bayati updating formula

2y H* H " +5 y"H
Hk+l:Hk+ 7/1. 7; 55'['_ 7/ : 7/

(6 7) 5y
Occupies a central role in unconstrained optimization . (Here ¢ and
y denoted certain difference vectors occurring on iteration k of a Quasi-
Newton method , with &7y >=0. B™® denotes the current Hessian

approximation , and H® its inverse : see , for example , [4]) A significant
result due to Goldfarb [6] is that the correction in the Al-Bayati formula
satisfies a minimum property with respect to a function of the form
1= ||jV = trace(EWEW ) (its corollary in [4]) .

The main result of this paper is to show that these formulae also
satisfy a minimum property with respect to the measure function y of Byrd
and Nocedal defined in (1.1) .

Theorem2.1: if H® is positive definite and &'y >0, the variation
problem

minimize ‘¥ (H (a2 5 H (2 eenn(2.2)
subjectto BT =B e s e (2.3)
BS=7 e e e e (2.4)

is solved uniquely by the matrix B®** given by the formula (2.1).

proof: the matrix product that forms the argument of ¥ can be cyclically
permuted so that

P(H Y pBH ®") =trace (H ™ pB) —In(det H ™ det pB)
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=PHYN pB)=F(BH™ ) (2.5)
A constrained stationary point of the variational problem can be
obtained by the method of lagrange multipliers.
A suitable lagrangian function is

L(B,A,A) = %l//(H (2 H,BH M2 L trace (AT (BT —B))+ A" (BS —%)

:%(trace(H ®) 5B) — Indet H™ —Indet pB) +trace (A" (B - B)) + A" (BS - y)

Where A and A are lagrange multipliers for (2.3) and (2.4),
respectively. To solve the first order conditions, it is necessary to find B, A
and A to satisfy (2.3), (2.4), and the equations oL/0oB; =0. Using the

identity 9B/0B;; =e;e] and Lemma (1.4), it follows that
oL/oB; =0= %(trace(H ) peel)—(oB™);) +trace (A" (e;ef —ee]))+Aee]s
1 _
= E((PH (K))ji —(pB 1)ji) +AG Ay + (/15T)ij :
Transposing and adding, using the symmetry of H® and B, gives

H®X —pBt+ 18" +54" =0

or

PBE=HM 115" +61 =0, e (2.6)
B =H/p+A5 I p+51 lp

which shows that the optimum matrix inverse involves a rank-2 correction

of H® . to determine 2, (2.6) is post-multiplied by y. It then follows, using
the equation B~y = & derived from (2.4), that

S=Hylp+18"ylp+ylp

and hence
v S=y"Hylp+y 28 vyl p+y' Ayl p.
' S=y"Hylp+2y 28 vl p
oy =y Hy+2y" 18"y
py 8-y Hy =2y"A8"y
p—y Hyl6Ty=2y"2

Rearranging this gives  y'A= %(p—}/T Hy /5 y)
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and so
S=Hylp+18'ylp+Aylp
S=Hylp+id'ylp+5y Al p
A0yl p=8—-Hylp-5y"Alp
A0y =pS—Hy-5y"A

5
A8y = pb - HV—E[P—VTH7/5T7]
5
A=(pb - H7—5[p—7TH7/5T7])/5Ty ,

from (2.7) we have

H;/é'T
A6T =— +y Hyls"
5T 25T [,0 y Ay 7/]
TH 5T
A :_7/5Ty +25T [p+}/TH7//5T7]
&y H, 56"
oA = +y Hyls'
substituting this expressmn into (2.6) gives the equation
_ Hys" +8y™H 66"
pBLl=H_ 7 5T/ +5Ty[p+7TH7/5T7]
where
p=y"Hyls'y

and hence the proof .

3.Conclusions:

It is a well-known consequence of the sherman-Morrison formula [4]
that there exists a corresponding rank-2 update for B, which is given by the
right — hand side of (2.1). Moreover the conditions of the theorem (2.1)
ensure that the resulting updated matrix B is positive definite (as in [4]).

This establishes that the AL-Bayati formula satisfies first order
conditions (including feasibility) for the variational problem. Finally,

P(HM " pBH ®')is seen to be a strictly convex function on B > Oby

virtue of (2.5) and Lemma (1.2), so it follows that the AL-Bayati formula
gives the unique solution of the variational problem. This idea may be
extended for any positive definite matrices of Broyden class.
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