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ABSTRACT

In this paper, we have investigated self-scaling sequential
unconstrained minimization techniques (SUMT). Our new modified version
on CG-method and QN- method shows that it is too effective when
compared with other established algorithms to solve standard constrained
optimization problems.
Keywords: unconstrained optimization, self-scaling technique.
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1- General Introduction to Nonlinear Constrained

The general constrained minimization problem
minimize f(x)

_ ¢, (x)<0 i=1..m
subject to O, (1)
h,(x)=0 i=m+1.L
where xis an n-dimensional vector and the functions f (x)
¢(x), i=1.mand h(x)=0, i=m+1,..,] are continuous and usually as-

summed to possess continuous second partial derivatives. The constraints in
eq.( 1) are referred to as functional constraints.
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There are basically two different kinds of constrained optimization
approaches:
Indirect Method: changes the constrained optimization into unconstrained

optimization to be solved.
(Sequential Unconstrained Minimization Technique, SUMT)
Direct Method: deals with the constraints directly in the search for the
Optimum. (Kwon,2001)

2-Sequential Unconstrained Minimization Techniques (SUMT):
Main idea:
* Solve a constrained optimization problem by solving a sequence of
unconstrained optimization problems, and in the limit, the solutions of the
unconstrained problems will converge to the solution of the constrained
problem.
* Use an auxiliary function that incorporates the objective function together
with “penalty” terms that measure violations of the constraints. INT[2]

3-Classical SUMT:
Two groups of classical methods:
Barrier methods: impose a penalty for reaching the boundary of an
inequality constraint.
Penalty methods: impose a penalty for violating a constraint.

4-Exterior Point Methods (Penalty function):
Definition: A function p(x): R" — Ris called a penalty function for eq.(1)
satisfies
1-p(x)=0 if c(x)<0, h(x)=0 and
2-p(x)~0if c(x)<0or h(x)=0
Penalty function are typically defined by

p(6)= 3200, ()+ Yol ()

i=m+1

Where
#(y)=0if y<0and (y)~0 if y>0

#(y)=0 if y=0and p(y)~0 if y=0

4-1 General Type of Penalty Function Methods
There are several types of penalty function method with the
inequality constrained which has the following two terms:

1-¢(c, (x)) = [min(0, ¢, (X))f (quadratic loss function)
2-#(c,(x)) = [min(0, ¢,(x))] (Zangwills,(1967) loss function)
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or with the equality constraint which has the following two forms
1- by (x)) = (hy (x))*

2- (l’(hi (X)) = ‘hi (XX

Hence ,our objective function may be defined by

0%t = Fx)+ 3918, 0]+ = X plh, (0]

i=m+1
5- Interior Point Methods (Barrier Function):
Definition: A barrier function for eq(1) is any function B(x): R" — R that
satisfies
-B(x)> 0 forall x that satisfy c¢(x)> 0

-B(x) = o as [jy max{c;(x)} — 0

The idea in a barrier method is to dissuade points x from ever
approaching the boundary of the feasible region. We consider solving

Q(Xk uuk) = min f(x, ) + 1, B(x,)

s.t. c(x,)>0
X, €R"

For a sequence of x4, — 0. Note that the constraints c(x, )>0 are

effectively unimportant in &(x,,z, ), as they are never binding in

e(xkuuk)' INT[1]

5-1 General Types of Barrier Function Method:
There are several types of Barrier function method

moq

1-B(x) =
26,69

2-B(x)=)_ b e >0 ( Toint etal., 1997)
= ¢;(X)

3-B(X) = —iln(c ,0)

6-Mixed Exterior-Interior Methods:

we consider some method, which can be used to solve a general
class (equality and inequality of problem) thus, the new problem can be
converted into an unconstrained minimization problem by constructing a
function of the form. (Fiacco & Mc Cormick, 1968a, 1968b)
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O(%,, 11,) = F(x, )+ ,ui¢[ci (x)]+ 1 Dol ()] )

i=m+1

Although both exterior and interior-point methods have many points
of similarity, they represent two different points of view. In an exterior-
point procedure, we start from an infeasible point and gradually approach
feasibility. While doing so, we move away from the unconstrained optimum
of the objective function. In an interior-point procedure, we start at a
feasible point and gradually improve our objective function, while
maintaining feasibility. The requirement that we begin at a feasible point
and remain within the interior of the feasible inequality constrained region is
the chief difficulty with interior-point methods. In many problems we have
no easy way to determine a feasible starting point, and a separate initial
computation may be needed. Also, if equality constraints are present, we do
not have a feasible inequality constrained region in which to maneuver
freely. Thus interior-point methods cannot handle equalities.

We many readily handle equalities by using a “mixed” method in
which we use interior-point penalty functions for inequality constraints only.
Thus, if the first m constraints are inequalities and constraints (m+1) to n are
equalities, our problem becomes:

Minimize O(x, 1) = f(x)+,ukB(xk)+i PX) ceeneniinieeeeeee, (3)
Hy
The function &6(x,u) is then minimized for a sequence of

monotonically decreasing x> 0.

We can solve the constrained problem given in eq.(1) construct a
new objective function &(x, 4, ) which is defined in eq.(2). Now our aim is
to minimize the function 6(x, y, ) by starting form a feasible point xo and
with initial value u, =1 and the method reducing g, is simple iterative
method such :

y7i
Lt = o e, (4)
(0]

Where & is a constant equal to 10 and the search direction dx in this
case can be defined

Where H is a positive definite symmetric approximation matrix to
the inverse Hessian matrix G and g is the gradient vector of the function
0(X,, &, ) - The next iteration is set to further point
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where Ais a scalar chosen in such that f,,, < f,. We thus test Ci(Xk+1) to
see that it is positive for all i. We find a feasible x«+1 and we can then
proceed with the interpolation. Then a correction matrix to get updates the
matrix H,

Hk+1:Hk +¢k .................................................................. (7)
where ¢, is a correction matrix which satisfies quasi-Newton condition
namely (H,,.Yy, =ov,)where v, and yk are difference vector between two

successive points and gradients respectively and o is any scalar.
The initial matrix Ho chosen to be identity matrix I. Hx is updated
through the formula of BFGS update. (Fletcher, 1970)

Heo = HO +H® (8)
where
H TH
HO = H, -2 S T w™ )
Y Hi Vi
.

H O = e (10)

Vi Yi
and

v H,. Y,

W= (Y H Y ) (=) (11)

Y e veHWY

And terminate of the method if
Xi = Xia| <& e, (12)
where ¢ =0.000001, and

y7]
My = ﬁ ........................................................................ (13)
6-1 General Type of Mixed Interior and Exterior Point:
Methods
1 .
1- O(X, 14, ) = F(X)+ 24, B(X ) + ——— P(X) ceveceeneninnannnn (Bigg,1983)
Sqrt(ﬂk)

2- 006 1) = F0)+ 14 BO) F - PK)  eereereeeeeeseesen (Rao,1994)

Hy
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3- 006 11,) = F0) = 1B+ POL)  eoevererrenan. (Gettfried,1973)
k
4- O(x, 11, ) = T (X) + 14, B(x,) +i P(X) €0 veevnrinnnnnn (Toint,etal,1997)
k
Where

B(x): -Inverse Barrier function which handles the inequality.
B(x) :- Inverse Barrier function which handles the equality.
§(x): -Log Barrier function which handles the inequality.
p(x): -Penalty function which handles the equality.

6-2 Outline Mixed Interior-Exterior Point Methods:

Stepl: Find an initial approximation Xo in the interior of the feasible
region for the inequality constraints i.e. Ci(xo)>0.

Step2: Set i=1 and g, =1 is the initial value of .

Step3: Set d; =-H,g;
Step5: Set x,, =X, + 4,d,, where A is a scalar.

Step6: Update H by correction matrix defined in eq.(7)-(11).
Step7: Check for convergence i.e. if eq.(12) is satisfied then stop.

Hi

Step8: Otherwise, set y;,, = o and take x=x* and set k=k+1 and go to

step5.

7- New Self-Scaling Variable Metric Methods:

In order to eliminate the truncation and rounding errors, the new
scalar parameter o is added to make the sequence and efficiency as
problem dimension increase. The poor-scaling is an imbalance between the
values of the function and change in x. The function values may be changed
very little even though x is changing significantly. This difficulty can
sometimes be removed by good scaling factor for the updating H and the
performance of self-scaling methods is undoubtedly favorable in some cases
especially when the number variables are large (Scales, 1985).

An idea is multiplying part of BFGS by scaling factor & before the
update takes place. The original motivation for self-scaling method arises
from the analysis of quadratic objective function, and the main results also
assume that exact line searches are performed.

Many authors have proposed a special scaling as follows:
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1-5, = Vi Yo (Bigg .1973) (14)
lk - DR A R R I
4‘/; Ok t 2‘/; O — 6( fia— fk)
T
— Vi Yi
2-Oyp = —7. — — (Oren,1974)......c.ccee.... (15)
“ Ve Hi Vi
T
_ H
3-Oys = M (Al-Bayati,1991) .......ccovvveeeen, (16)
Vi Yk
.
4-Cpy = —= Vi Y (Al-Assady,1991) ........ccune...... (17)
2v, g, — 6( frn— fk)
In This paper, we have suggested a new parameter say:
T
Vi O
Fnew =4~ 'II' i "
Yi HY;
Where

m= number of constrained
From the above, one can suggeste a more general family of the form:

Hio =/H 4G, H? e, (18)
Which satisfied the QN-like condition
o T e N P (19)

In fact, this relaxation of the QN-condition is of particular interest in
deriving algorithm for non-quadratic objective function. Several choices of
7,0, have been investigated, but the most effective one (in our numerical
computation and for the class of the constrained optimization problem)
presented here is readily interpreted in term of the earlier algorithms and
their property. We defined

il g
Hi,=H +(1- Y H 2 e, (20)
y Hy
Comparing with
il g
7/:1 Enew :(1_ T )m
y Hy

The above suggestion will be true if we prove that:
HuewY =0neV  IStrue
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i.e. HLeMy:(Hl"i_anesz)y
H:lem/ly:Hly"_Eneszy
HyyH v
Hy:Hy—#'i'WWT'FO-neW T
yHy vy
VT TH VT TH T
Hy = Hy — Hy + (y" Hy) Ty —yT 4 Ty —yT d + 0 gV = O gy V
viy yHy|lvy yHY

Hence, the new formula (20)satisfied the QN-condition. Our last
inquiry: Does formula (20) generates mutually conjugate gradient search
direction?To answer this equation, follow this new theorem

3-1 New theorem:
The new formula (18) generates mutually conjugate gradient search

direction
Proof:
Let F(X)=(1/2)x" Gx+b'x be quadratic function. Choose an

initial approximation matrix H, = H. We have to prove that for ELS,the
search direction d must satisfy :-

HiQy =H Qg oo (19)
Now, proceed by induction let i = 0 this implies
HiOka =H O oo (20)
From (18) we have
T T
H. 9., :{Hi CHYY R +5new\’;i}gm ....................... @1)
yi Hiyi Vi yi
.
Hi Oea =HiGea - (y'T 'g“jHiyﬁW?gmw 5 kLT
yi Hy; Vi'yi
Assume that this property is true for i namely
Hioowao=H O (22)

We have to prove that this property is true for i+1, realizing that for
quadratic function, it is well-know that: -
v/ g, =0 forj=1.2,..k

9;H,9,,=0 forj=1,2,..k
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use (23) in (21) to get

Hi 0 =Hi O (24)
Since we have: -
yiH g, =0 forick (25)
and
.
w'g,., =(y; Hiyi)°'5(V‘$Jk+l — (Hi¥i) Seay_o (26)
Vi yi HiY;

Thus new formula (18) generates mutually conjugate gradient search
direction because

Vg, =0 (27)

7-2 Outlines of the New Self-Scaling method:

Step 1: Find an initial approximation xo in the interior of the
feasible region for the inequality constraints i.e. c; (x) =0.

Step 2: Set i =1 and u, =1 is the initial value of .

Step 3: Set d; =—H,qg;

Step 4: Set x,,, = X; + 4,d,, where A isascalar.

Step 5:Update H by correction matrix which is defined in eq.(8-

11) where o, is defined in eq.(18)

Step 6: Check for convergence if |x; — xi_l‘ <€ where

e=1E -5 satisfied then stop.

Step 7: Otherwise, set x,,, = f—(‘) and take x=x* and set i =i-+1and

goto Stepb.

8- Numerical Results:

Several standard non-linear constrained test functions were
minimized to compare the new algorithms with standard algorithm see
(Appendix), with 1<n <10 and 1<c¢;(x) <10 and 1< h, (x) £10.

All the results are obtained using Pentium 4. All programs are
written in FORTRAN language and for all cases the stopping criterion taken
to be

X =X <6, 5=10"°

All the algorithms in this paper use the same ELS strategy which is

the quadratic interpolation technique directly adapted from (Bunday, 1984).
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The comparative performance for all of these algorithms are
evaluated by considering NOF, NOI, NOG and NOC, where NOF is the
number of function evaluations and NOI is the number of iterations and
NOG is the number of gradient evaluations and NOC number of constrained
evaluations.

In table (1) we have compared our new algorithm with the standard
algorithm

Table (1)
Comparison of the BFGS algorithm with The new Self-Scaling algorithm

Self-Scaling BFGS- algorithm
NOF(NOI)NOG(NOC)

Test Fn. BFGS- algorithm
NOF(NOI)NOG(NOC)

1- 2630(244)5(3) 1510(202)5(3)
767(131)10(19) 712(130)10(19)
109(38)7(11) 109(38)7(11)
2153(263)8(13) 1717(242)8(13)
749(124)10(19) 689(120)10(19)
146(53)2(1) 72(35)2(1)
734(123)10(19) 761(137)10(19)
28345(295)15(29) 1512(189)10(29)
2719(282)15(29) 2725(310)15(29)
38352(1553)82(143) 9807(1368)77(143)

Appendix:
1. min f(X) = XX, (X, + X, + X3) + X5

S.t.

X7+ X2+ %, +xZ =40
X, X, X5 = 25
5>x, 21

2- min f(x) = (x, - 2)* +%x22

S.t.
2%, +3X, =4

7
Xl_EJrXZ <1

3-. min f(x) = x2 + x5

S.t.
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X +2X, =4
x?+x2 <5
X =0

4- min f(x) = x,X,
S.t.
25-x-x:=0

5- min f(x) = (X, —2)* +(x, —1)°
s.t..
X, —2X, =-1
_ 2
% +X2+1>0

6- min f (X) = x/x,
S.t.

2
Xl
XX, —(—=)=6
X = (%)
X +X, 20

7- min f(x) = (x, =3)* +(x, — 2)°
S.t.

X +2X, =4
X’ +x2 <5
X =0

8- min f(x) = x> — XX, + X
S.t.
X\ +x2 =4
2%, +X, <2

9- min f(x) = x> — XX, + X
S.t.
X\ +x2 =4
2%, +X, <2

83



Ghada M. Al-Naemi

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

REFERENCES

Al-Bayati, A.Y. (1991) “A New Family of Self Scaling Variable
Metric Algorithms for Unconstrained Optimization” J.Ed. and
Sc.,12

Biggs, M.C. (1973) “A Note On Minimization Algorithms which
Make Use of Non-Quadratic Properties of the Objective Function”,
Journal of Institute of Mathematics and Its Application, No. 12,
pp. 337-338.

Biggs, M.C. (1983) Computational with  Sequential
Unconstrained  Minimization  Technique for  Nonlinear
Programming Numerical Optimization Center T.R.N.

Bunday, B.D.(1984) Basic Optimization Methods, London:
Edward Arnold.

Fletcher, R. (1970) “ A New Approach to Variable Metric
Algorithms” The Computer Journal, No. 13, pp. 317-322.

Fiacco, A.V. and McCormick, G.P., (1968a) “ Extensions of SUMT
for Nonlinear Programming Nonlinear programming Equality
Constraints and Extrapolation ” ,Management science, Vol
12,No0.111,pp.816-828

Fiacco, A.V. and McCormick, G.P., (1968b) Nonlinear
Programming  Sequential ~ Unconstrained  Minimization
Techniques, New York: Wiley

Frish,K. R.(1955) “The Logarithmic Potential Method of
ConvexProgramming” Memorandum may 13,195 ,University
Institute of Economics Oslo.

Kwon,T.H.(2001) “Constrained optimization ” University of
Western Ontario London, Ontario, Canada

Oren, S.S. 1974,and Luenbereger D.G. “Self-Scaling Variable
Metric Algorithm, Part II”, Management Science, No. 20, pp. 863-
874.

Rao, S.S., (1994) “Optimization Theory and Applications” ,Wiley
Eastern limited.

Scales L.E.(1985) “Introduction to Non-Linear Optimization”,
London: Macillan.

84



Investigation on self-scaling...

[13]

[14]

[15]

[16]

Toint, Ph. L and Nicholas .M. (1997) “Anote on The Second —
Order Convergence of Optimization Algorithm by using Barrier
Function” : A current survey, Report 94/1, IBM T. J. Watson
Research Center, U.S.A.

Zangwill, w G.(1967)“Non-linear Programming Via Penalty
Function” Mgnt csi.13 pp.344-358

Continuous Optimization Method Introduction to Penalty and
Barrier Method for Unconstrained Optimization (2001), http://
www. personal .engin. umich. edu/ ~mepelman /teaching /IOE11
/section 9.pdf

“Penalty and Barrier Method”(2001) http://www .cityu.edu. hk
/ma/staff/zhang/MA66-11-16.pdf.

85



