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ABSTRACT

In this paper, the parabolic partial differential equations in three-dimensions are
solved by two types of finite differences, such as, Alternating Direction Explicit (ADE)
method and Alternating Direction Implicit (ADI) method. By the comparison of the
numerical results for the previous two methods with the Exact solution, we observe that
the results of Alternating Direction Implicit (ADI) method is better and nearest to the
exact solution compared with the results of Alternating Direction Explicit (ADE)
method. we also studied the numerical stability of both methods by Von-Neumann
Method.
Keywords: Parabolic Partial Differential Equations in Three Dimensions, finite
difference methods, Alternating direction explicit method, Alternating direction implicit
method, Von-Neumann Method.

dagh EDE b ¢ BSAl) adal) g5 (pa Arjad) Apldalill Y slaal) o Aflaiall Libasall cilgaial) Ak

i il dsana s Ol dana ) giadlae
bl aala/lacalilly Cisalall asle 4
2011/8/16: ¢l J g &b 2011/5/2: daal) Ml )
Laildll

alatials ¢ AL adadl) g5 (e sladd S 0 el Llalall calad) Ja o3 Caad) 1aa 4
Laileiall clgatiall Ziyhg (ADE) dasywall 4dliall cilgaiall danh (dgiiadl @ligydll gihh G Cpe s
il o Jaa sl Jagpaall dall il ae cpiled) Giddall e JSEAaaal) 33 45jlaes . (ADI) dsiacall
Glgaial) Lyl il e Jagacaall Jall I (iydls il sa (ADI) dsiaall ddlaial) cilgatiall 4k
Von- Lih st wl Gomlall oy bl G JS Ll duly a3 LeS . (ADE) dasyall 4l
.Neumann
Aok Logiiall g @) e ASA) pladll o5 (e bl D 3 Al Alalill Y oledll sAialidall cilalsl)
Olastim (s Ayl dyienal) Lleiall clgatiall ik, das yeall Ldlaid) Cilgaid)

1. Introduction:

Partial differential equations (PDEs) form the basis of very many mathematical
models of physical, chemical and biological phenomena, and more recently they spread
into economics, financial forecasting, image processing and other fields. To investigate
the predictions of PDE models of such phenomena, it is often necessary to approximate
their solution numerically, commonly in combination with the analysis of simple special
cases; while in some of the recent instances the numerical models play an almost
independent role [10].

Parabolic partial differential equations in two or three space dimensions with
over-specified boundary data feature in the mathematical modeling of many important

phenomena. While a significant body of knowledge about the theory and numerical
methods for parabolic partial differential equations with classical boundary conditions
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has been accumulated, not much has been extended to parabolic partial differential
equations with over-specified boundary data [4]. We often meet the problem of solving
equation of parabolic type in many fields such as seepage, diffusion, heat conduction
and so on [9].

B.J. Noye and K.J. Hayman in [11] used ADI to solve the two dimensional time-
dependent heat equations subject to a constant coefficient, J.M. McDonough in [12]
used ADI methods for solving elliptic problems and Norma Alias and Md. Rajibul Islam
in [1] used alternating group explicit (AGE) method and Iterative alternating
decomposition explicit (IADE) method to solve a two-dimensional and three-
dimensional in PDE problems. Mohamed A. Antar and Esmail M. Mokheimer in [2]
used spreadsheet programs to solve a three dimensional equation for numerical
solutions by using finite difference solutions which are the most appropriate.

In this paper, we study and apply the finite difference methods to approximate
the solution and study the stability of the numerical solution of a model of parabolic
partial differential equation in three dimensions.

These methods are combinations of finite difference method with

- Alternating direction explicit method (ADE)

- Alternating direction implicit method (ADI)

First, we derive the finite differential form of ADE and ADI methods for the given
model and then present an algorithm for each method. Also we compare between them.
The stability for the above methods has been examined .

2. Model of Equation

In the case of three dimensions, the mathematical model is such an initial and
boundary value problem is given by [9] as follows :
ou 0°u o°u o4
—= + + :
ot ox* oy* ozt
u(x,y,z 0)=g(x,y,2), (0<x,y,z<1) (2
u0,y, z, t) =fu(y, z, t), u(L, y, z, t) = fa(y, z, t), ( >0) .(3)
u(x, 0, z, t) = fa(x, z, t), u(x, 1, z, t) = fa(x, z, t), ( >0) .(4)
u(x,y, 0,t) =fs(x, y, t), u(x, y, 1, ) = fs(x, y, 1), (0<x,y<1t>0) ..(5)
where u(X, y, z, t) denoting temperature or concentration of chemical [15], while g, f1,
fo, f3, f4, f5 and fe are known functions. and where heat transferred in three dimension

system of length L, width W and depth D as shows in fig. (1) [2]. Fig. (2) shows grid
points in cubic.

(0<x,y,2<1t>0) ..(1)

@ (b)
i,j+1,k.
E » i,j,k+1
A ! //,
i-1jk @ -------- 3 ZAE— ®i+1jk
w Ay J R i,j,k J
Y4 / //, :
X ~ |
v D ’ i
> / 1
< L > ivjak-l ‘ I"l 1’k

80



Alternating Direction Implicit Method for ....

Fig. (1) (a) Problem Domain (b) Nodes layout
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Fig. (2) Grid points for Cubic

3. Numerical Methods

We solve the mathematical model in (1) with the combination of the finite
difference methods with ADE and ADI methods.

3.1 ADE Method

The alternating direction explicit (ADE) method for generating numerical
solutions to the diffusion equation is stable for some time because it is an explicit
method; it holds a speed advantage over implicit methods for computations over a
single time level [7] the explicit methods in which the solution at the new time step is
formed by a combination of pervious time step solutions [13, 14].

When we consider a square region (0<x<1), (0<y<1), (0<z<1) and that u
is known at all points within and on the boundary of the square region; we draw lines
parallel tox,y, z,t—axis as
X =14X i=0,1,2, ...
y=jdy j=0,1,2, ...

Z=kAz k=0,1,2, ...
t=nat n=0,1,2,...

Then, the explicit finite difference approximation to parabolic partial differential
equation in three dimensional equation is given by
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u|n]—1k —U uiﬂ—l,j,k _zuirjj,k +uirl—l,j,k ul j-1,k 2u| ik +U| j+Lk
A (Ax)? (ay) )
uirjj,k—l _2uirjj,k +uirjj,k+l
(4z)
Multiply eq. (6) by At and set Ax=Ay=Az, then we have a square region and
At
(Ax)®
uanﬂk (- 6r)”| ik T r( ik Uik T Uk T U g U +uirji’k+1) ---(7)

3.2 ADI Method

The ADI was first suggested by Douglas , Peaceman and Rachford [3, 4, 11] for
solving the heat equation in two spatial variables and alternating direction implicit
(ADI) methods have proved valuable in the approximation of the solutions of parabolic
and elliptic differential equations in two and three variables [6, 7]

In the ADI approach, the finite difference equations are written in terms of
quantities at three x levels. However, three different finite difference approximations are
used alternately, one to advance the calculations from the plane n to a plane (n+1), the
second to advance the calculations from (n+1) plane to the (n+2) plane and the third to
advance the calculations from (n+2) plane to the (n+3) plane [10].

Then, we advance the solution of the parabolic partial differential equation in three
2
dimensions from nth plane to (n+1)th plane by replacing 872 by implicit finite
2 2

difference approximation at the (n+1)th plane. Similarly, Z—l: and Z_l; are replaced by
y z

an explicit finite difference approximation at the nth plane. With these approximation

eq.(1) in parabolic model can be written as.

n+l n+l n+l n+1 n n n
Ui j _uu ik Ui 1k —2u ik Ui Uik _2ui,j,k Ui ik

A (Ax) (ay)’

] ] ) ...(8)
ui,j,k—l - 2ui,j,k + ui.j.k+l
(dz)
We set Ax= Ay = Az then we have a square region and multiply eq.(8) by At then we
get

At
n+l n+1 n+l n+1 n n n
ul ik —U (Ax)z ( i-1,j.k —2U ik +u|+lj k +ui,j—1,k _2ui,j,k +ui,j+1,k
n n n
+ui,j,k—1 _Zui,j,k +u i,j,k+1)
At

Let r=—— we get

(AX)

n+l ( n+1 2 n+l n+1 ) ( 2 n n )

uljk_u =ryu i-1,j,k uljk+u|+ljk +ruljlk l"Ii,j,k_i_l'li,jJrl,k

n n n
+ r(ui,j,k—l _2ui,j,k + ui,j,k+l)
And
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n+l n+l n+1 n+l n n n n
ui,j,k - I’( i-1,j.k 2“. ik +u|+11 ) ui,j,k + r(ui,j—l,k _zui,j,k +ui,j+1,k)
n n n
+ r(ui,j,k—l - 2ui,j,k + ui,j,k+1)
We simplify and rearrange the above equation and we get

n+1 n+1 n+1
rull]k+(1+2r)'lljk I+1j (1 4r) k+r(uljlk+ulj+1k)
n
+r(ui,j,k—l +ui,j,k+1)

..(9)

Also, we advance the solution from the (n+1)th plane to (n+2)th plane by replacing

2 2
by implicit finite difference approximation at (n+2)th plane. Similarly, % and ou
X

are replaced by an explicit finite difference approximation at the (n+1)th plane. With
these approximation egs.(1) in parabolic model can be written as follows:

n+2 n+l n+l n+1 n+l n+2 n+2 n+2
uljk_uljk_ |le_2u k+ul+ljk Ij—lk_2u k+ulj+1k
At (ax)? (ay) 10)
n+l n+1 n+1 e
ui,j,k -1 2U j.k +U| jk+1

()
We set Ax = Ay = Az then, we have a square region and multiply eq.(10) by At then
we get

At
n+2 n+l n+l n+l n+l n+2 n+2 n+2
ul]k_uljk:(AX)Z(lljk 2uljk+ul+ljk+uljlk 2u|jk+u|j+1k
n+l n+l n+l
+uljk -1 2ul]k +u|]k+1)
At

Let r = > Wwe get

(Ax)

n+2 n+l _ n+l n+l n+1 n+2 n+2 n+2
uljk_uljk r(lljk 2U k+u|+1jk)+r(|11k 2U k+u|]+1k)

n+l n+l n+l
+r( Ijk 1—2U ik +ulj|(+1)

And
n+2 n+2 n+2 n+2 n+l n+l n+l n+l
Ui,j,k _r( i,j-1k _2uljk +U; j+lk) uljk +r( i-1,j.k _2uljk +U| J+lk)

n+1 n+1

n+l
+ r(ui,j,k -1 2u| j.k +U| j k+1)
We simplify and rearrange the above equation and we get
n+2 n+2 n+2 n+l n+l n+l
ruljlk+(1+2r)uljk rulj+1k (1 4r)u|jk+r( I1jk+ul+lj )

n+l n+l
+r<uljk 1+uljk+l)

Now, we advance the solution from (n+2)th plane to (n+3)th plane by replacing
2 2 2
g— and % with explicit finite difference approximation at (n+2)th plane then, —- 0 u
X
by an implicit finite difference approximation at the (n+3)th plane .
Then, eq.(1) in parabolic model becomes .

.(12)
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n+3 n+2 n+2 n+2 n+2 n+2 n+2 n+2
uljk_uljk_ i-1,j,k 2uljk+ul+ljk Ijlk 2uljk+ulj+lk
At (Ax)? (ay)

n+3 n+3 n+3 a (12)
|]k 1_2u|1k +u|jk+l

(Az)f
Multiply eq.(12) by At when Ax = Ay = Az then, we have for a square region and we
get

At
n+3 n+2 n+2 n+2 n+2 n+2 n+2 n+2
ui,j,k_ui,j,k:(AX)z( i-1,j.k 2uljk+ul+ljk+uljlk 2u|jk+ulj+lk
n+3 n+3 n+3
+u|jk l_2uljk +u|jk+l)
At

Let r =—- we get

(4x)

n+3 n+2 n+2 n+2 n+2 n+2 n+2 n+2

ui,j,k_uljk_r(lljk 2U k+ul+lj )+r(ljlk 2U k+ulj+1k)

n+3 n+3

n+3
+r( Ijkl_2uljk +uljk+l)
And
ulﬂﬁ( - r( |n;r3;< -1 2u|nj+3k + ulnﬁﬁl) ulnj+2k + r( |n;21 k 2u|nj+2k + ullej k)
n+2 n+2 n+2
+ r(ui,}r—lk 2U +k + ul;;.] k)
We simplify and rearrange the above equation and we get
n+3 n+3 n+3 n+2 n+2 n+2
ruljkl (1+2r)ui,jk ru|1k+1 (1 4r)J k+r( Iljk+ul+ljk)
n+2 n+2
+ I'(UI } 1,k +U| L—lk)
Expressed from the above equations (9), (11) and (13) by the system AX =B

..(13)

[1+2r  -r . . 0 0 _U?i
)

-r 1+2r -r . .. 0 0 0 U3
J

0 -r 1+2r -—r : us

0 0 -r 1+2r -r

-r 1+2r -—r 0 :
-r 1+2r -—r n-+l

uml—z,j,k
n+1
0 0 0 R i -r 1+2r__umLiLk_
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n n n n n
(1_ 4r)u2,j‘k + r[uz,j—l,k F Uk TUg kU ki ]
n n n n n
(1_4r)u3,j,k + r[u3,j—1,k F Uz TUsgjka T Uz e

n n n n n
(1_ 4r)um1—1,j,k + r[uml—l,j—l,k FUngjak PUmgjea t uml—l,j,k+1]

Similarly, applying the above procedure with remainder of equations
These systems are of a tridiagonal linear system of equations and can be solved
by the Gauss elimination.

4. Numerical Stability

There two methods, we used here one including the effect of boundary are
conditions and the other excluding the effect of boundary conditions which are used to
investigate stability. Both methods are attributed to John von Neumann. These
approaches are Fourier and matrix methods. Fourier method, the primary observation in
the Fourier method is that the numerical scheme is linear and therefore it will have

solution in the form u(x,t)= A'e'* .
Thus, numerical scheme is stable provided |ﬂ|<1 and unstable whenever
1A|>1 [14].

4.1 Stability Analysis of ADE Method

The Von-Neumann method has been used to study the stability analysis of
Parabolic model in three dimensions.
We can apply this method by substituting the solution in finite difference

method at the time tby u',, =y /(t)e"“e™¥e™, when @, B,y >0 and m=+-1 [58].

To apply von-Neumann on eq.(1) we have to linearlize the problem and from finite
difference scheme for eq.(1)
uirj;,lk = (1_ 6r)uin,j,k + r(uin—l,j,k UL U T U U T uin,j,k+1) ...(14)
At
Where Ax=Ay=Az and r = —
(Ax)
We assume u,, =w(t)e"e™e™
Substituting in eq.(14) then, we have
l//(t +At)emaxemﬁyemyz _ (1_6r)w(t)emaxemﬁyemyz n r(l//(t)ema(x—ﬁx)emﬁyemyz +l//(t)ema(x+Ax)emﬁyemyz
+l//(t)emw(emﬂ(y—4|y)emyz n l//(t)emaxemﬁ'(erAy)em;/z n l//(t)emaxemﬁyemy(z—Az) +l//(t)emaxemﬂyemy(z+4|z) )
Or

t+ At _ _ _
W( ):1+ r(e maAx +eman +e mp4y +emﬁAy +e myAz +emyAz _ 6)

w(t)
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% &=1- 4r{sm[ ;‘Xj+sm (ﬂ yj+sm (}/AZ‘ZH

Where & is the amplification factor , for stable situation we need |§| <1 and hence we

have —1<1- 4r[sm ( adx j+sm (’B yj+sm ( Azﬂsl
2 2 2

Considering the left-side inequality (as the right-side inequality is always true), We
have

a5 2]

For some «,f and y , sin (aglxj sin (ﬁzyj and sin{%) are unity. Hence, we

have —1<1-4r(3), r s% therefore 0<r s%

This is the condition for stability, in a square region Ax = Ay = Az when we use
ADE method for eq.(1).
Thus the ADE method for eq.(1) is conditionally stable.

4.2 Stability Analysis of ADI Method

The ADI finite difference method from eq.(9)
Assuming

u's =yt e™e™ ...(15)
And substitute (15) in (9) we have
—ry(t+ At)em U Me™em™ 4 (14 2r hy(t + At e™e™ —ry(t+ At)em ) =
(1= ar)y(tle™e™e™ + r(y(t)em =™ 0 Ye™ 4yt )" em e
V/(t)emaxem,b’yemy(z—Az) n l//(t)emaxem,b’yemy(z-mz) )
Dividing by e™*e™e™” i.e.
[ re ™ 4 (14 2r) = re™ y(t + At) = (L— 4r Wy (t) + [re ™ + re™ 4 re ™

+re™ Jy(t)
i.e.

—W(;j(;)At) [— re™™ 4 (1+2r)— rem““x] =(1-4r)+ (re‘”’ﬂ“y +re™V 4™ 4 remmz)
By using Euler formula

"™ = cos(aAx)+msin(ax)

e " = cos(ax)—msin(ax)

™™ = cos(Bdy)+msin(B4y)

e ™ = cos(B4y)—msin(BAy)

e™* = cos(yAz)+msin(y4z)

e ™ = cos(yAz)—msin(y4z)

Substituting in the above eq. we get

w(t+4t) [1+2r —2r cos(ax)] = 1~ 4r + 2r cos(4y) + 2r cos(y4z)

w(t)
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i.e.

W(;J(rtf){l 2r—2r(1 2sin (aglxjﬂ:
1- 4r+2r(1 2sin (ﬂ yD+2r(l 2sin (7;‘ij
= W(;J(rt)m)[l+4rsm (agxﬂzl—w{sin (ﬂzyme (%ﬂ}
W(HAt)Z1—4{sin2(ﬁzﬁyj+sin2[ﬂz‘zﬂ
wl(t) aAx
1+4rsin ( > j
. yAz
hen, ¢, :1—4{sm (ﬂZijrj: ( 5 H
1+4rsin ( > j

Also from eq.(11) we assuming u7% = w/(t +24t)e™*e™e™ and

WL =yt + A e ..(16)

Substituting (16) in (11) we have

—rl,//(t+241t)e"‘°’X I-Y)eme 4 (L4 21 Yy (t + 24t e e™¥e™ — ry(t + 24t)

e emilyraylgm = (L—4r)y(t+ At e™e™ + r[:,// t+At)em”‘ xA )My M
+l//(t+At)ema X+4X em/iyemyz +l//(t+At)€max m/j’yemy(z AZ)+W(t+At)emaX mﬂyemy(HAz) ]
Ie.

—ry(t+24t)e™ + (1+2r )y (t + 24t) - ryp(t + 24te™? = (1—4r )y (t + 4t)

+ r[w(t + A ™ £yt + At + iyt + At)e ™ 4y (t + Ate™* |
Ie.
ylt+241) [— re™™ 414 2r - remﬁAy] =(1-4r)+ r[e’m”‘AX M g™ emyAz]
w(t + At)
By using Euler formula as previously

w(t+24t) [L+2r — 2r cos(B4y)] = (1 - 4r)+ 2r cos(aax )+ 2r cos(yAz )
w(t+4t)

i.e.

%;%Si%ggg{1+-2r-—2r(1-—23n12[5%§1jj} 1- 4r4—2r(1 2sin (‘f?xjj
frin(2)
%{H 4rsin2(%ﬂ =1- 4r{sin{%‘xj +sin2(%ﬂ

i.e.
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plir2ar) 1 4[ ( ﬁj VAZH

wit+at) ) 1+4rsin ( j

O Y V)|

1+4rsin (ﬂ yj

Similarity from eq. (13) we obtain

)

S =
1+4rsin (7/22)

Thus, we found that the amplification factors are

2

ij .(17)

1+4rsin (
2

& =

£, = _ ﬁAy) ...(18)

T ...(19)
1+4rsin (72 )

Where &,, &, and &, stand for the 7 plane, /7 plane and /// plane. However, in
either form unconditional stability is lost.
Furthermore, the combined three-levels have the form :

e )
()
o e )

A careful analysis of (20) shows that there is a finite stability bound. Each
individual equation is conditionally stable by itself, we have that stable provided
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Eaot| <1 80 £, -&, &, | <1 this yields: |&,|-|&, |-|6, |<1. Let us consider the cases
£,1<1, |&|<1 and |&, |<1. We will show the values of r which satisfy the condition
& |<1in(17)

()]

‘ 1+ 4rsin (a;lxj

<1

For some values o, and y we have sin (ang sin (,B;iy] and sinz[%j are

unity. Hence, we have —1< 1-4r(2) <1.
1+4r
Considering the left-side inequality (as the right-side inequality is always true),
we have —1< 1-8r le. —1-4r<1-8r.Weget r< 1 therefore, 0<r, < 1.
1+ 4r 2 2

Similarly, applying the above procedure with &, in (18) and & in (19), we obtain
that 0<r, s% and 0<rn, < ; ; this shows that the ADI method is conditionally stable

in three-dimensional problem. Therefore, the combined three-levels are conditionally
stable [6, 17].
5. Numerical Results
Example (1) [9]:
We consider the initial and boundary value problem as follows :

ou du du oS . \
E:8x2+8y2+822 (0<xy,z<Lt>0)
u(x,y,z,0)=sin(x+y+2), (0<x,y,z<1)
u(0,y,z,t)=exp(-3t)sin(y + z), . ..(21)
ul,y,z,t)=exp(-3t)sin(l+y +z), (0<y.2<5t=0) >

u(x,0,z,t) = exp(-3t)sin(x + z),

u(x,1,z,t)=exp(-3t)sin(x +1+z), (0<x2<Lt20)
u(x,y,0,t)=exp(=3t)sin(x + y) (0O<xy<Lt20) |

u(x, y,Lt)=exp(-3t)sin(x + y +1),
By using the numerical methods such as ADE method and ADI method of (21), we take

the parameters Ax = Ay = Az =% and At=r(Ax)* for convenience using the exact

solution of (21) u(x,y,z,t)=exp(-3t)sin(x+y +z). Also, we compute the stability of
each of the above methods and we conclude that the ADE method is conditionally stable

where, r < % and ADI methods are also conditionally stable where, r < % is compared

between them and with the exact solution.
Example (2) [16]:
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We solve the following initial-boundary value problem :

2 2 2
PDE %Z%JF%JF% (0<x,y,z<7;t>0) A
u(0,y,z,t)=u(z,y,z,t)=0,
BC u(x0,zt)=u(xzzt)=0,  (0<xyz<mt20) > ..(22)
u(x,y,0,t)=u(x,y,z,t)=0,
IC u(x, y,z,0)= 2sin xsin ysin z (0<x,y,z<7)
/

We use the numerical methods such as ADE method and ADI methods of (22).

We take the parameters Ax = Ay = Az :% and At=r(Ax)* for convenience by using

the exact solution of (22) u(x,y,z,t)= 2exp(~3t)sin xsin ysinz. Also, we compute the
stability of each of the above methods and we conclude that the ADE method is

conditionally stable where, r S% and ADI methods are also conditionally stable where,

r< % is compared between them and with the exact solution.

Table (1) with respect to example (1) contains the numerical solution of the
Parabolic equation in three dimensions by using the above two methods with space step

2

size Ax=Ay=Az=0.1 and time step size At=r(Ax)" where r = % Also, we present

comparison figures(3) for values of concentration u by the methods.

Table (2) with respect to example (1) contains the relative error comparison of
ADE method with exact solution and ADI method with exact solution of the Parabolic
equation in three dimensions at space step size Ax=Ay=Az =0.1 and time step size

At =r(Ax)* where r :% :

Table (3) with respect to example (2) contains the numerical solution of the
Parabolic equation in three dimensions by using the above two methods with space step

size AX=Ay=Az= % and time step size At =r(Ax)’ where r = % Also, we present

comparison figures (4) for values of concentration u by the methods.
Table (4) with respect to example (2) contains the relative error comparison of
ADE method with Exact solution and ADI method with Exact solution of the Parabolic

equation in three dimensions at space step size Ax=Ay = Az =% and time step size

At =r(Ax)* where r :% :

Table (1): is a comparison between the two methods ADE and ADI with the
exact solution for the values of concentration u that are computed at space step size

Ax:Ay:Az:O.l,r:%and At =r(Ax).
| |
Point Exact ADE ADI
(i,j,k,n) Solution Method Method
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(4,6,2,1)

0.783326909627483

0.783326909627483

0.783326909627483

(3,7,5,1)

0.932039085967226

0.932039085967226

0.932039085967226

(5.2,2,2)

0.562529029304166

0.562526828039469

0.562529548231699

(6,2,3,2)

0.714671043169683

0.714668246549321

0.714671648939347

(6,2,2,3)

0.639404127994110

0.639399674141941

0.639405199732211

(6,2,3,3)

0.711996045513164

0.711990787154908

0.711997319914961

(6,2,2,4)

0.637010852709908

0.637004824033134

0.637012521041193

(6,10,10,4)

0.737363041234928

0.737356115923518

0.737364954625562

(6,2,2,5)

0.634626535401321

0.634619187059868

0.634628924534946

(6,10,10,5)

0.734603107939522

0.734594692250449

0.734605835528647

0.632251142538846

0.632242661045841

0.632254410725571

(6,10,10,6)

0.731853505012428

0.731843817621965

0.731857219481380

(5,2,2,7)

0.552079876933901

0.552071453706244

0.552084926396277

(6,10,10,7)

0.729114193787308

0.729103400388248

0.729119086472935

(6,2,2,8)

0.627526996661259

0.627516644524798

0.627532557431839

(6,10,10,8)

0.726385135742553

0.726373366120191

0.726391403002175

(6,2,2,9)

0.625178177212767

0.625167035887518

0.625185154103224

(6,10,10,9)

0.723666292500741

0.723653651157792

0.723674125798434

(6,2,2,10)

0.622838149342695

0.622826293503129

0.622846711469224

I
|
|
| (6,226)
i
|
|
|

(6,10,10,10)

0.720957625828092

0.720944198872030

0.720967204783124

(6,2,5,11)

0.810500155241008

0.810478226150170

0.810520922412845

(6,10,7,11)

Table (2): is a relative error comparison of the methods ADE with the exact

. . . . 1
solution and ADI with the exact solution at space size Ax=Ay=Az=0.1, r= g and

At =r(Ax).

Point
i.j,k,n
(4,6,2,1)

0.875830205566404

Error of ADE Method
With Exact solution

0

0.875806720312609

0.875852427764604

Error of ADI Method
With Exact solution

0

(3,7,51)

0

0

(5,2,2,2)

3.913157512402389¢-006

9.224902280013131e-007

(6,2,3,2)

3.913157512452229¢-006

8.476202719776912e-007

(6,2,2,3)

6.965629362591201e-006

1.676151364665402¢-006

(6,2,3,3)

7.385375648834013e-006

1.789900104721094e-006

(6,2,2,4)

9.464009520808871e-006

2.618999782815910e-006

(6,10,10,4)

9.391996917166388e-006
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(6,2,.2,5) 1.157900126010213¢-005 3.7646292604076008-006
(6,10,10,5) 1.145610327807386¢-005 3.713010598019793¢-006
(6,2,2,6) 1.341475314782071e-005 5.169127432865513¢-006

| 610108 1.323678905153516¢-005 5.0754268808691806-006 |
(5,2.2,7) 1.525726259845934¢-005 9.146253261886166€-006
(6,10,10,7) 1.480344114991009e-005 6.710451763707669€-006
(6,2,2,8) 1.649671889199063¢-005 8.861404545197716¢-006

| 610108) 1.620300551689009€-005 8.628011936088742¢-006 |
| (6229 1.782103991384771e-005 1.115984324363079-005 |
(6,10,10,9) 1.746847003942847¢-005 1.082446118328699¢-005
| (62210) 1.903518527073746¢-005 1.374695261910981e-005 |
| (6,10,10,10) 1.862377979151310¢-005 1.328643277883371e-005 |
| (62511 2.705624508090585¢-004 2.562266238049262¢-005 |
(6,10,7,11) 2.681484795339333¢-004 2.537272414081325¢-005
Point Exact
(i,j,k,n) Solution
(4,32,1) 0.293892626146237 | 0.293892626146237 | 0.293892626146237
(7,5,3,1) 1.063313510440050 | 1.063313510440050 | 1.063313510440050
(21022) | 0.056872642518016 | 0.056850621398073 | 0.056876808436968
(10,103,2) | 0.108178194531369 | 0.108136307872132 | 0.108186118580100
(102,23) | 0.054806204572748 | 0.054763770801568 | 0.054814233971712
(2,2,33) 0.104247595984634 | 0.104166882155451 | 0.104262868809048
(10324) | 0.100450813695858 | 0.100343164580931 | 0.100481891345830
(2,9,3.4) 0.191085920882486 | 0.190864041080742 | 0.191127915068227
(10325) | 0.096809658510437 | 0.096659806550511 | 0.096838026842775
(31035) | 0.184142913133320 | 0.183857877767385 | 0.184196872907972
(109,26) | 0.093292129819009 | 0.093111655800397 | 0.093326303050237
(3,2,36) 0.177452175966845 | 0.177108893983998 | 0.177517177315329
(10327) | 0.089902408706757 | 0.089693749194009 | 0.089941928031700
(10237) | 0.089902408706757 | 0.089693749194009 | 0.089941928031700
9,2,2,8) 0.086635851351631 | 0.086401305780018 | 0.086680283624917
(109.38) | 0.164791181945494 | 0.164345049756992 | 0.164875697151579
(4,9,2,9) 0.218574376262447 | 0.217898236106089 | 0.218702493624445
(21039) | 0.083487982662447 | 0.083229720103876 | 0.083536919140181
(9.9210) | 0.153033534241174 | 0.152501067405843 | 0.153134451112478
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(10,3,3,10) 0.153033534241174 | 0.152501067405843 | 0.153134451112478
(2,7,2,11) 0.125448145928949 | 0.124963255459567 | 0.125540066944623
(2,3,3,11) 0.147473140208941 | 0.146903117275181 | 0.147581199843718

Table (3): is a comparison between the two methods ADE and ADI with the
exact solution for values of concentration u that are computed at space size

Ax:Ay:Az:z ,
10

the methods ADE with the exact solution and ADI with the exact solution at space size

r =% and At =r(Ax) . Table (4): is a relative error comparison of

AX=Ay=A7=" | r:% and At = r(Ax).

10

(4,3,21)

Error of ADE Method
With Exact solution

0

Error of ADI Method
With Exact solution

0

(7,5,3,1)

0

0

(2,10,2,2)

3.872005760313238e-004

7.324996285312854¢e-005

(10,10,3,2)

3.872005760313093e-004

7.324996285326660e-005

(10,2,2,3)

7.742512277767201e-004

1.465052912632865e-004

(2,2,3,3)

7.742512277766800e-004

1.465052912631781e-004

(10,3,2,4)

1.161152013286873e-003

2.197659856237270e-004

(2,9,3,4)

1.161152013286785e-003

2.197659856234035e-004

(10,3,2,5)

1.547902990589807e-003

2.930320463268755e-004

(3,10,3,5)

1.547902990589854e-003

2.930320463266187e-004

(10,9,2,6)

1.934504217691750e-003

3.663034737665745e-004

(3,2,3,6)

1.934504217691776e-003

3.663034737660562e-004

(10,3,2,7)

2.320955752575711e-003

4.395802683355000e-004

(10,2,3,7)

2.320955752575557¢-003

4.395802683355000e-004

(9,2,2,8)

2.707257653202280e-003

5.128624304269712e-004

(10,9,3,8)

2.707257653202869¢-003

5.128624304265734e-004

(4,9,2)9)

3.093409977511271e-003

5.861499604335709e-004

(2,10,3,9)

3.093409977511389¢-003

5.861499604335289e-004

(9,9,2,10)

3.479412783417774e-003

6.594428587494726e-004

(10,3,3,10)

3.479412783417955e-003

6.594428587498353e-004

(2,7,2,11)

3.865266128815142¢-003

7.327411257671027e-004

(2,3,3,11)

3.865266128814974e-003
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y-direction

y-direction

comparison between ADE with Exact solution

08 —
c
=
=
T o4 ADE

0.2 | | | | | | | | |

0 01 nz 0.3 0.4 ns 06 o7 na 08 1
x-direction (b)
comparison between ADI with Exact solution

nz 0.3 0.4 ns 06
x-direction
comparison betwean ADE ADI and Exact salution

¥-direction

Figure (3). (a) The comparison between ADE method with exact Solution, (b) The comparison
between ADI method with exact solution, (c) The comparison between ADE, ADI and exact
solution, all for finding the concentration values u(3,:,2,3) at cubic n=3, level k=2, row i=3 and

for all columns j when Ax=Ay=Az=0.1, At=r(Ax} and r =% .

comparison between ADE with Exact solution

(a)

2 T T —
<» Emnact
< 1A —— ADE
B A
E
Tos- —
| | | | |
D<U’ 05 1 1.5 2 25 35
¥-direction (b)
comparison between ADI with Exact solution
2 T T o C
O Cuact |
15 |; Aw
=
g 1 2
B
Tos- -
1 | | | | | =
E%‘ 0s 1 1.5 2 245 3 35
¥-direction (C)
comparison between ADE ADI and Exact solutio
2
T T
X;K Exact
c * ADL ]
2
= — ADE
2.
-
P —
05 1 15 2 25 3 35

x-direction

Figure (4). (@) The comparison between ADE method with exact Solution, (b) The comparison
between ADI method with exact solution, (¢) The comparison between ADE, ADI and exact
solution, all for finding the concentration values u(6,:,4,3) at cubic n=3, level k=4, row i=6 and

1

for all columns jwhen Ax=Ay=az=" , At=r(Ax} and == .
10 8
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numerical solution by using ADE and ADI methods

y-direction ¥-direction

Figure (5). with respect to example (1) shows that the numerical solution by using ADE and
ADI methods in 3-D figure of concentration values u(:,:,2,3) at cubic n=3, level k=2, for all

rows i and for all columns j when Ax = Ay = Az=0.1 , At=r(axf and r = .
8

numerical solution by using ADE and ADI methods

y-direction

x-direction

Figure (5). with respect to example (2) shows that the numerical solution by using ADE and
ADI methods in 3-D figure of concentration values u(:,:,4,3) at cubic n=3 ,level k=4, for all

rows i and for all columns j when Ax = Ay = A7 T A= r(Ax)2 and r _1
10 8

6. Conclusion

Through our study for numerical stability to the ADE method for PDESs in three-
dimensional, we conclude that it is conditionally stable such as in two dimensions
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equations, but the ADI method is lost the unconditionally stable that is in two
dimensions. Also, we saw that from the numerical results the ADI method is better than
the ADE method and its results are nearest to the exact solution compared with the
results of ADE method.
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