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An element   is known a strongly nil* clean element if            , where   ,    are 

idempotents and   is nilpotent, that commute with one another. An ideal   of a ring   is called a 

strongly nil* clean ideal if each element of   is strongly nil* clean element. We investigate some 

of its fundamental features, as well as its relationship to the nil clean ideal. 
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1. INTRODUCTION  
     In this paper, a ring   is associative with unity     

unless otherwise expressed.                           

are respectively Jacobson radical, the set of unit, idempotent 

and nilpotent elements of respectively. "An ideal   of a 

unital ring   is clean in case every element in   is a sum of 

an idempotent and a unit of  "[4]. In [1] Sharma and Basnet 

defined the concept nil clean ideal (henceforth: NCI) as for 

each      there is a nilpotent element   in   and an 

idempotent element        then      . We call   is 

strongly nil clean ideal (henceforth: SNCI) if each   in   are 

written as       where                and 

      [1]. An element   in a ring   is called tripotent if 

      [6], "An ideal   is called strongly tri nil clean ideal 

(henceforth: STNCI) if for each element     can be 

expressed as        where   is tripotent and   is 

nilpotent elements with      "[5]. 

     This paper introduces the concept of strongly nil* clean 

ideal (henceforth: SN*CI).We give some of it's properties, 

and find it's relationships with NC ideals. 

2. Strongly nil* clean ideals: 
     In this section we introduce the concept of the SN*CI. 

Some of it's characteristics are discussed as well as some 

examples.  

 

Definition 2.1:         
     An element   of a ring   is said to be strongly nil 

clean if      , where         and        and 

     . A ring   is said to be strongly nil clean if every 

element of    is strongly nil clean[2]. 

Example 2.2: 
     The ring of integers modulo 4, Z4 is SNC ring. 

Definition 2.3:         
     An element   of a ring   is known SN*C element if 

for each     there exist two idempotent elements  1,  2 

in   and a nilpotent element   in   that commute with one 

another, such that    1   1 2  . A ring   is said to be 

SN*C ring if each element of   is SN*C element. 

Example 2.4: 
     The ring of integers modulo 8, Z8 is SN*C ring. 

Definition 2.5: 
     An ideal   of a ring   is known SN*CI if each element 

of   is SN*C element.     
Example 2.6: 
     Consider the ring of integers modulo 16, the ring of Z16 

contained three proper ideals namely:  

   {                   },    {          } and 

   {     }. The ideals   ,    and    of a ring Z16 are SN*C 

ideals.       
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Lemma 2.7: 
     Let              with                      Then 

         is an idempotent. 

Proof: 
     Since        )      )     then            .  

Note that:  

         
                           .  

Hence          is an idempotent. 

Proposition 2.8:  
      Let   is a SN*CI. Then   is a SNCI.   

Proof: 
     Let   be strongly nil* clean ideal. Then for all    , we 

have              where       are idempotent 

elements and   is a nilpotent that commute with one 

another. By (lemma 2.7)          is idempotent.  

Then we get                          is idempotent,  

since (                        .  

Hence                                and      .  

Hence   is strongly nil – clean ideal.  

 

Next, we give the following results: 

Lemma 2.9: 
     If                             , then 

    is a unit. 

Рroof: 
     Since         then     , for some positive 

integer  . If we set 

                               , 
showing that     is a unit. Since           , hence 

           . So     is also unit. 

Proposition 2.10: 
     If   is SN*CI, and if    , then   is a nilpotent.                
Рroof: 
     Let   be SN*CI such that      then  

                                            
that commute with one another.  

By (lemma2.7)           is an idempotent.  

Then       where             
Let       this implies           
We get            since            .  
Let        . Suppose        , hence    .  

Then          . So       . Then 2 is nilpotent. 

Proposition 2.11:          
     If   is SN*C ring, then        is a nil ideal.  
Proof:  
     Suppose         then     is a unit. Since   is 

SN*C ring, then            .  

Now                   , this implies 

                .  

Hence                   .  

This implies                    where    is a unit.  

Thus               , but         is an 

idempotent. Then          .  

So         . Therefore              
 

Proposition 2.12: 
     Let   be an ideal of a ring   with every    , 
                   if      is nilpotent, then 

  is SNCI. 

Proof: 
     Since       then        is an idempotent we get 

      . Now          .  

Then              .  

Now                      
Thus                    .  

On the other hand,               .  
Since            . Then   is SNCI.  

Proposition 2.13: 
     If   is local ring, and   is SN*CI of  , then   is a nil 

ideal. 

Proof: 
     Let   be a local ring, then either   or     is a unit. 

Let   be a SN*CI of  , and let    , if   is a unit. Then 

   . Let     is a unit. Since   is a SN*CI, then 

            , where             and         
that commute with one another.  

Now                    then  

                    . 

Since     is a unit we get     also is unit, say   . 

Then                 . Since         is 

idempotent By (lemma2.7). Then             is also 

idempotent. Hence              , this implies 

       . Therefore      . Hence   is a nil ideal.  

Lemma 2.14: 
     Let   be a ring, with       , and if   is idempotent 

element, then     is a unit.  

Proof: 
     Let       .  

Then                      .  

Therefore     is a unit.  

Theorem 2.15:  
     Let   be a ring, with       , and   be a SN*CI, then 

each element of  , can be written as a sum of two units.  

Proof: 
     Let   be a SN*CI and      then 

            , Where             and       , 

that commute with one another.  

Consider                  . Since         is 

an idempotent. Then by (lemma2.14)              is a 

unit, say    and     is a unit, say   , then        .  

 

3. Tri nil clean ideal  
     In this section we give the definition of the tri nil clean 

ideal. We investigate some of its properties and provide 

some examples. 

Definition 3.1: 
     An ideal   is known TNCI if for each element     

can be expressed as       where     and        

if further        then   is called STNCI[5]. Clearly 

every NCI is TNCI.  
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Example 3.2: 
     In the ring of integers modulo 6, the ideals of  6 are 

 1={0, 2, 4} and  2={ 0, 3} are TNC ideals. 

     The next results shows the relation between TNCI with 

strongly clean ideal and nil ideals. 

Proposition 3.3:  
     If   is an ideal with every             
                  . Then   is a strongly clean ideal.   

Proof: 
     Let                             
Consider        , then                   
               . Hence        is a unit. 

This implies                        
Since        is a unit. Then              

where         ,  

by (lemma2.9)         . We get           *, 

where  *    , since        is an idempotent.  

Then    *  * where  *     . Hence   is strongly 

clean ideal.   

Proposition 3.4: 
     Let   be an ideal of a ring   and         If every 

element of  ,           where                . 
Then   is a nil ideal of  . 

Proof: 
     Let          where      and      .  
Now                          . Since 

        Then                
Let                         . Then         
Thus   is a nil ideal of  . 

Proposition 3.5: 
     Let     , and let         then    .  
Proof: 
     Let         then         then      is unit.  

Let       . Since          
Then it follows          , then      . So     . 

Hence    .  

Proposition 3.6: 
     If   is strongly tripotent ideal       
                 , if         Then        
is a nil ideal.  

Proof: 
     Let                , and let           
Since         then also        , hence       is a 

unit, let       .  

Now                     . Since        is 

nilpotent. Then         where              .  

Now            . Then            
This implies           since     is a unit. Then 

       where        Since      is idempotent. 

Then       , we get     , hence      We get 

   . Thus      s nil ideal. 
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 8/20225/ تاريخ انقبول:              2022/6/7تاريخ الاستلاو:

 

 انًهخص
بأوٍا وقيت معذَمت بقُة إرا كاوج   في انحهقت   يقال نهعىصش            

 .عىصش معذَو انقُِ  عىصش مخحايذ, َ   حيث             

, وقي معذَو  بأوً مثاني وقي معذَو بقُة إرا كان كم عىصش في   َيقال نهمثاني 

 .بقُة

 .في ٌزا انبحث اعطيىا خُاص جذيذة نٍزا انىُع مه انمثانياث

قيت* انمعذَمت بقُة بانشكم انخاني: يقال نهمثاني اعطيىا حعشيفا جذيذاً نهمثانياث انى

يكخب بانشكم انخاني     بأوً وقي* معذَو بقُة ارا كان كم عىصش   

عىصش   عىاصش مخساَيت انقُِ َ       حيث             

اعطيىا بعض انخُاص الاساسيت نٍزا انىُع  .معذَو انقُِ َحبادنيت مع بعضٍا

   .مه انمثانياث, ََجذوا بعض انعلاقاث نٍزي انمثانياث مع مثانياث اخشِ

 

مثانيت  جاكُبسُن ساديكال، عىصش معذَو انقُِ، :انًفتاحيت انكهًاث

 عىصش مخساَي انقُِ.  معذَمت* وقيت بقُة،
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