Raf. J. of Comp. & Math’s. , Vol. 8, No. 1, 2011

On N-Flat Rings

Raida D. Mahammaod Husam Q. Mohammad
raida.1961@uomosul.edu.iq husam_alsabawi@yahoo.com

College of Computer Sciences and Mathematics
University of Mosul, Mosul, Iraq
Received on: 22 /11 /2009 Accepted on: 21/2/2010
ABSTRACT
Let I be a right ideal of R, then R / | is a right N—flat if and only if for each a € I, there
exists b e I and a positive integer n such that a" # 0 and a" = ba". In this paper, we first
give and develop various properties of right N-flat rings, by which, many of the known
results are extended. Also, we study the relations between such rings and regular, -
biregular ring.
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1. Introduction:
Throughout this paper R is associative ring with identity, and R-module is
unital. For a € R, r(a) and I(a) denote the right annihilator and the left annihilator of a,
respectively. We write J(R), P(R), Y(R) (Z(R)) and N(R) for the Jacobson radical, the
prime radical, the right (left) singular ideal and the set of nilpotent elements of R,
respectively.
(1) Aring R is called a right SF-ring [8] if every simple right R-module is flat. (2) A
ring R is said to be right (left) quasi-duo [11] if every maximal right (left) ideal is a
two-sided ideal of R. (3) A ring R is said to be reversible [3] if ab = 0 implies ba = 0,
a,b € R. (4) Aring R is called reduced if contains no non-zero nilpotent elements. (5)
A ring R is called Von Neumann (strongly resp.) regular provided that for every a € R
there exists beR such that a = aba (a = a?b, resp.). (6) A ring R is called biregular [7] if
for any a [J R, RaR is generated by a central idempotent. (7) A ring R is said to be -
biregular [7] if for any a [0 R, Ra"R is generated by a central idempotent for some
positive integer n. (8) A ring R is called right (left) Kasch ring [4] if every maximal

right (left) ideal of R is a right (left) annihilator. (9) A ring R is called 2-primal if the
set of nilpotent elements of the ring coincides with the prime radical.

2. Simple N-flat:

We introduce the notion of a right N—flat with some of their basic properties. We
also give some relation between right N—flat rings and other rings.
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Definition 2.1: Let I be a right (left) ideal of R. Then R/ I is a right (left) N-flat if and
only if for each a e |, there exists b € | and a positive integer n such that a" # 0 and a" =
ba" (a"=a"b). m

The following example illustrates the above definition.

Examples:

(1) Let Z1o be the ring of integers modulo 10 and I = {0, 2, 4, 6, 8}, J = {0, 5}. Then
Zio/l and Z10 / J are N — flat.
(2) Let Zg be the ring of integers modulo 9 and K = {0, 3, 6}. Then Zo/K in not N — flat.

Remark (1): Every SF —ring is simple N —flat. m

Proposition 2.2: Let R be a ring whose every simple right R — module is right N — flat.
Then,

(1) Every left non — zero divisor element is a right invertible.

(2) Z (R) = J(R).

Proof: (1) Let a # 0 be a left non — zero divisor, if aR # R, then there exists a maximal
right ideal M of R containing aR. Since a € aR [J[1M, and R / M is right N — flat, then
there exists a positive integer n and b € M such that a" # 0 and a" = ba" which implies
(1-b) a" = 0. Since a is left non — zero divisor, then (1-b) =0, and we get b=1e M
which is a contradiction. Thus aR = R, and hence a is right invertible.

(2) Letz € Z (R), then for any r € R, we have I(1 —r z) = 0, which implies that (1-rz) is
right invertible, so that z € J(R). Therefore Z(R) c J(R). m

Proposition 2.3 : If R is a ring whose every simple right R — module is right N — flat
and R has a finite number of maximal right ideals whose product is contained in J(R ),
thenZ (R)=J(R)=0.

Proof: Let M1, M2, ..., Mm be maximal right ideals of R such that MiMz...Mm < J(R).
First, suppose that J(R) is non — zero reduced. If x € J(R), and since xeM,, and
R/M, is N-flat, then there exist a positive integer n_ and y,eM,such that
x" =y_x" which implies that 1-y, er(x" ). Since J(R) is reduced and x € J(R),
then  r(x)=r(x"), thus 1-y_er(x" )=r(x). Thereforex=y,Xx. Since
Y. XeJ(R)cM,_, and R/M_ ,is N — flat, there exist a positive integer n_, and
Yma €M, , suchthat x"=y_ x""tand we get x=Yy,_ X, and so on.

Finally, we have yi € M, 1 <i<m, such that

YiY2...ym1Ym € M1 M2 ... Mmc J(R) and X =y1 Y2 ..... ym-1 YmX.

Now z(1-y1Y2.....ym) =1 for some z € Rwhichyields x =1x=z (1 -y1 Y2 ..... ym)
x =0, which is a contradiction.

Now suppose that J(R) is not reduced. Then there exists OacJ(R) such that a? = 0.
Since a € J(R) € Mm and R / Mp, is N — flat, then a=bma for some bm € Mm. Since
bma € J (R) < Mm-1 and R / Mm.1 is N-flat, then a= bma = bm-1 bma for some bm.1 € Mm-1
and so on.

Finally we have bi € Mj, 1 <i<m, such that

bibz... bmibm e M1 Mz ... Mm1 Mmc J(R)anda=Db1 b2 ... bm-1 bma .

Now u(1-b1 b2 ... bm) =1 for some u € R which yields

a =1a = u(l-by ... bm)a = 0. Thus J(R)=0 and by Proposition 2.2 Z(R)<J(R), thus
Z(R)=0.m
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Recall that a ring R is right (left) weakly continuous if J(R)=Y(R)(J(R)=Z(R)),
R/ J(R) is regular and idempotent can be left module J(R). Clearly every regular ring is
right (left) weakly continuous .

Corollary 2.4 : Let R be a left weakly continuous, whose every simple right R —
module is N — flat and R has a finite number of maximal right ideals whose product is
contained in J(R). Then R is regular. m

Lemma 2.5 : [2]: Aring R has zero prime radical if and only if it contains no — nonzero
nilpotent ideal. m

Theorem 2.6: Let R be a semi—prime 2—primal ring whose every simple right R—
module is N—flat. Then R is biregular.

Proof : Let 0 # a € R such that a> = 0. Thus, a € P(R). Now, since R is semi—prime ring
then R has no non — zero nilpotent ideal, and by Lemma2.5, P(R) = 0, so a = 0 and
hence R is reduced.

Now, for any 0 # a € R, r(RaR) = I(RaR) = I(aR) = r(aR)=r(a). If E = RaR + r(a), then E
= RaR @ r(RaR) [since RaR N r(RaR) =0].

Suppose that E # R. Let M be a maximal right ideal of R. Since R/M is N —flat and a e
M, there exists b € M and a positive integer n, such that a" # 0 and a" = ba" .

Now, 1-b € I (@") =r (a") = r(a) = M which implies that | € M a contradiction. We have
proved that R= E = RaR @ r (RaR). Since every idempotent in reduced ring is central,
then RaR is generated by a central idempotent. m

Lemma 2.7. [11]: If R is a right quasi-duo with J(R) = 0, then R is reduced. m
We now consider other condition for right simple N-flat to be biregular.

Theorem 2.8: If R is right quasi duo ring whose every simple right R — module is N —
flat and R has a finite number of maximal right ideals whose product is contained in
J(R), then R is biregular.

Proof : By Proposition 2.3, J(R) = 0. Since R is right quasi-duo, then R is reduced by
Lemma 2.7. The proof of R being biregular is similar to that of Theorem 2.6. m

Remark (2) [5]: If M is an essential right ideal, then Rr / M can not be projective.m
We consider the condition (*) : R satisfies | (a) < r (a) for any a€ R.

We begin with a property of rings whose simple right R—module are either N-
flat or projective.

Theorem 2.9: Let R b a ring satisfy condition (*). If every simple right R — module is
either N — flat or projective, then Z(R) N Y(R)=0.

Proof: Let us first suppose that Z(R) N Y(R) is non—zero reduced ideal of R. If0
#x € Z(R) N Y(R), r(x) is essential right ideal of R and xRNr(x) # 0. Let a € R such
that 0 # xa € r(x) . Since Z(R) N Y(R) is reduced and xax € Z(R) N Y(R), then
(xax)?=0 which implies xax=0. Therefore (xa)? = 0, which yields xa = 0, a contradiction.
Now, suppose that Z(R) N Y(R) # 0, then there exists 0#yeZ(R)NY(R) such that y>= 0.
We will prove that RyR + r(y) = R.

If not, let M be a maximal right ideal containing RyR + r(y). Since r(y) is essential right
ideal then R / M can not be projective by Remark (2), whence it is N — flat. Since R/ M
is N — flat, then there exist d € M and a positive integer n such thaty" =0 and y" = dy"
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, Since y? =0, thenn =1, so thaty = dy and we get 1-d € I(y) c r(y) c Mand | € M.
Whence M = R, contradicting the maximally of M. Therefore R=RyR + r(y) .

Now, 1 =u+2z,u e RyR, z € r(y) which implies that y = yu . Since u € Z(R) and
Ry N 1(u) = 0 then y = 0 a contradiction. We have proved that Z(R) N Y(R)=0. m

Corollary 2.10: Let R be a right weakly continuous satisfy condition (*). If every
simple right R—-module is N—flat or projective, then Z(R) N J(R)=0. m

Corollary 2.11: Let R be weakly continuous ring satisfying condition (*). If every
simple right R—-module is N—flat or projective, then R is regular. m

Proposition 2.12: Let R be a semi—prime ring satisfying condition (*), whose every
simple right R—-modules is either N—flat or projective. Then R is left non-singular.

Proof : Suppose that Z(R) # 0 . Then there exists, 0 # z € Z(R) such that z = 0. Set L
= RzR +r(z) . Let K be a complement right ideal of R, then E = L & K is an essential
right ideal of R .

Then KRzR < K N RzR < K N L = 0 implies that (RzZRK)? = 0. Since R is semi—prime
then RzRK = 0, which yields K c r (z) < L. Whence K = K N L = 0. This shows that
E = L is an essential right ideal of R .

Now suppose that L # R . Let M be a maximal right ideal of R containing L. Then R/ M
is N-flat, and there exists u € M and a positive integer n such that z" #0 and z" = uz"
which yields n=1 and 1-u € 1(z) c r(z) < M. Thus 1 € M, contradicting M # R.
Therefore L=Rand 1 =s+twheres € RzR, t € r(z) and we have z = zs + zt = z5 .
Now Rz N 1 (s) = 0 implies that z = 0. This is a contradiction, thus R is left non —
singular. m

Applying Proposition 2.12 we get the next result.

Corollary 2.13:If R is a semi—prime left weakly continuous ring satisfying condition
(*) such that every simply right R—module is either N—flat or projective, then R is
regular. m

Recall that a ring R is called a FGP-injective ring [ 1 ] if, for any 0+ a € R, there
exists 0 # ¢ € R such that 0 # ac = ca and any right R— homomorphism from acR to R
extends to an endomorphism of R.

Lemma 2.14 [9]: If Y(R) = 0 and satisfy condition (*), then R is reduced. m

The following result is given in [1]

Lemma 2 .15: If R is a right Kasch FGP-injective ring, then J(R)=Y(R)=2(R). m
Comparing Theorem 2.9 with Lemma 2.15 , we ask the following question:

Question: Is a ring satisfying condition (*) whose every simple right R—module is
either N—flat or projective strongly regular ring ?

Theorem 2.16: Let R be a right Kasch and right FGP-injective ring satisfying condition
(*) and whose every simple right R—module is N—flat or projective. Then R is strongly
regular .

Proof: Since R is right Kasch, right FGP-injective ring, then Z(R)=J(R)=Y(R) by
Lemma 2.15 and Z(R)NY(R)=0 by Theorem 2.9, which implies Z(R)=Y(R)=0.
Therefore R is reduced by Lemma 2.14. Let 0 # a € R, we shall prove that aR+r(a)=R.
If not, then there exists a maximal right ideal M containing aR + r(a). Since R is a right
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Kasch ring, then there exists b € R such that M=r (b). Let x =ab +y, where be R,y
e r(a). Sox € aR + r(a) c r(b) and bx = b (ab+y) = 0, since by = 0, then bab=0. But R is
reduced so we have ab = ba = 0, which implies ber(a) < r(b), therefore b®=0, since R is
reduced then b= 0, which is contradiction. So that aR+r(a)=R and therefore, R is
strongly regular ring. m

3. Rings Whose Simple Singular R — Modules are N-Flat

In this section, we give further properties of rings for which every simple
singular R—modules are N-flat.

Theorem 3.1: If R is a ring whose every simple singular right R—module is N-flat and
satisfying condition (*), then J(R) N Y(R)=0.

Proof : If J(R) N Y(R) # 0,there exists an element 0# a € J(R) N Y(R) such that a° =
0. If r(a) + RaR # R, there exists a maximal right ideal M of R containing r(a)+RaR.
Since ae Y(R), then r(a) is an essential and so M must be essential. By assumption, the
simple singular right R—module R / M is N-flat. Thus there exists a positive integer n
and b € M such that a" # 0 and a" = ba". Since a2 = 0, then n =1, and therefore a = ba
which implies that 1-be I(a) < r(a)cM. Thus 1 € M, which is a contradiction. This
proves that r(a) + RaR = R, and hence a = ad for some d € RaR < J(R).

Thus (1-d) is invertible and we get a = 0, which is the required contradiction.
Therefore JR) N Y(R)=0. m

Theorem 3.2: If R is a ring satisfying condition (*) and whose every simple singular
right R—module is N — flat, then J(R) = 0 if and only if J(R) is a reduced ideal of R.

Proof : Suppose that J(R) is reduced. If for any a € J(R), then set L=aR+r(a). If L=R,
then 1 = ab + ¢, for some b € R and ¢ € r( a), which implies that a = a%b. Since a
J(R), then a— aba e J(R) and (a — aba)?=0 which yields a = aba.

Therefore a = ae, where e = ba is idempotent. Since J(R) can not contain a hon—zero
idempotent, thena=0.

If L # R, then there exists a right ideal M of R such that L @ M is an essential right ideal
of R.

We claim that L @ M = R. If not, there is a maximal essential right ideal K of R
containing L © M. By assumption, the simple singular right R—module R / K is N-flat.
Since J(R) contains no non—zero nilpotent elements and a € J(R), then a € K and a" =
da" for some d € K, a" # 0 and a positive integer n.

Now (1-d) € I(@") = r(a") = r(a) < K. Which implies that 1€ K, contradicting that K is
maximal. This shows that L ® M = R.

Then aR+r(a) = eR with e = e € R. So a° = a%e = aea = abaa =ha?, for some b € R. But
a € J(R), thus a = 0 by the proceeding proof. This proves that if J(R) is reduced, then
J(R) =0.

The converse is obvious. m

Finally, there is an investigation of the Von Neumann regularity of whose
simple singular right R—Modules are N—flat.

Theorem 3.3: If R is a ring satisfying condition (*) and right weakly continuous whose
every simple singular right R—module is N—flat, then R is a strongly regular ring.

Proof :From Theorem 3.1 J(R) n Y(R) = 0. Since R is weakly continuous, then J(R)=
Y(R) =0 and R is strongly regular ring. m
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Lemma 3.4. [6]: Let R be a semi—prime ring. Then R is reduced if it is a reversible
ring.m

Following [10] a right R—module M is said to be Wjcp—injective if forag Y(R) ,
there exists a positive integer n such that a" # 0 and every right R~homomorphism from
a"R to M can be extended to one of R to M. If Rr is Wjcp—injective, we call R is a right
Wjcp-injective ring.

Before closing this section, we present the connection between simple singular
N-flat and m-biregular rings.

Theorem 3.5: Let R be a semi—prime and reversible ring whose every simple singular
right R—module is either Wjcp—injective or N—flat. Then R is a =n-biregular ring.

Proof : For any 0 # ae R, I(RaR)=r(RaR) =r(a) =I(a) by Lemma 3.4. If Ra"R®r(a") # R,
then there exists a maximal right ideal M of R containing Ra"R @ r(a"). If M is not
essential in R, then M = r(e), 0#e?>=e<R. Therefore ea=0. Since R is reversible, then ae
= 0. Hence eer(a) < r(e), which is a contradiction. So M is essential in R. By hypothesis
R/ M is either Wjcp-injective or N-flat. First we assume that R / M is Wjcp—injective
and a ¢ Y(R). Hence, there exists a positive integer n such that a" # 0 and any right R—
homomorphism, a" R — R/ M can be extendedto R — R/ M.

Setf:a"R —» R/ M defined by f (@"r) =r + M, r € R. Then f is well-defined right R —
homomorphism. Hence, there exists ¢ [J R such that f(a" r) = ca"r + M. So 1 + M = f(a")
= ca"+ M, thatis1 —ca" € M. Since ca" € Ra"R < M , then 1 € M, which is a
contradiction.

Hence R/M is N-flat. Since acM, then a" # 0, a" = da" for some de M and a positive
integer n. Now 1-d e I(@") = r(@@") < M, which implies that 1 € M, again a
contradiction. Hence Ra"R @ r(a") = R, therefore R is = - biregular. m
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