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ABSTRACT

In this paper, we deal with compatible (left, right)-group actions on posets, i.e; (G,
H)-posets. Our main purpose in this work is to study the maximal chains in (G, H)-
posets to observe that this study gives us indications on the type of some (G, H) actions
on posets. Therefore, we shall study the behavior of the (G, H) actions on chains.
Keywords: maximal chains, partially ordered sets, compatible (left, right) group
actions.
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8.1 Introduction:

The idea of a group action of groups on sets can be extended on sets with
additional mathematical structures, specially on posets.

A group action of a group G in a poset P can be considered as a group
homomorphism p : G __,isom(P , P) defined by p(g) = pg where pg:P _,P isan
isomorphism defined by pg(p) =gpforall geG,peP.

Such a poset P with a left action of G on it, is called a left G-poset, or simply a G-
poset.

Also, since in general there are many such homomorphism p, so maybe there is
many group actions of the group G on a poset P (at least the trivial action). Hence, by
G-poset we mean only left group action of G on P.

Equivalently, Let G be agroup and P aposet, we say that P is a left G-poset if
for every geG and peP there corresponds a unique element gPeP such that for all
p,q € P and g,01,92 € G;

M ep=p (ii)9:(9:p)=9:9) p {ii)if p)q then Ip) Ig

When condition (iii) is neglected, P is called a left G-set. This definition is slightly
different from the definition given in [6].Similarly we define a right H-poset. We can
conclude that every G-poset P can be considered as a right H-poset (and conversely)
which is defined by:

43



Abdul Aali J. Mohammad & Eman M. Tahir

gp=p&  forall peP and geG.
Also the concept of a group action on sets can be extended to compatible left, right
actions on sets. For more details see: [5], [7] and [8].

8.2 Covering (G, H)-posets:

In this section, we give the definition of the (left, right) group actions on posets,
and the covering poset of a given poset.

So, we begin with the formal definition first, before proceeding to explain the
intuitive concept behind it.

Definition (2-1): [4].

A poset P is called (G,H)-poset if P is a left G-poset, a right H-poset and the two
actions are compatible, that is for each geG, heH and peP there corresponds a unique
element 9p" in P such that 9p" = 9(p") = (9p)".

Equivalently, let G and H be two groups and P a poset , we say that P isa (G,
H )-poset if for every geG , heH and peP there corresponds a unique element 9p"eP
such that
epe =p
P is a left G-poset with the action defined by: 9%p =9°® V peP, geG.

P is a right H-poset with the action defined by: p" = ®p" v peP, heH.
(%p)" = g(ph) v geG heH and peP .
5. p>q=9%" >9" v geG, heH and p,qeP .

When condition (5) is neglected, P is called a (G, H)-set. For more details see: [5],

[6] and[8].

Example (2-2)
Let the additive group Z acts on the set of the real numbers R by the action :

Ll e

"a=a+n V a€R , neZ , and the additive group Q acts on R from the right by the action a"
=za-nVaeR,neQ,thenRisa(Z, Q)-poset.

Also, there exists a G-poset P which is also a right H-poset , but it's not a (G , H)-
poset , as in the following example; let G = H = C> = {e,a} and P = {X,y,zw,t,r} is a
poset with x<y , z<w , t<r. Then, P is a G-poset with the action defined by : & =z ,
qy=w,%=t,%=r,°p=pV peP, and a right H-poset with the action defined by :
xXt=x,y’=y,z2*=r, wa=t,pe=pV peP. But, Pis not (G, H)-poset, that is since
Cz=22=tand ¥z =% =r.

Remark (2-3):

Any G-poset P can be considered as (G, H)-poset with the trivial right action of
Hon P.

Also, from the definition above, we see that a left G-poset P is one left action of
G on P. But, for (G, H)-poset P there are two compatible group actions one is from the
left and the other from the right.

Definition (2-4): [2]

Let P be a poset. We say that the element a of P covers the element b of P if
a>b and there is no element ceP such that a>c>b .

Proposition (2-5):

Let P be a (G, H)-poset and a,beP with a covers b, then %" covers 9" Vv geG
and heH .
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Proof:

Suppose that %" does not cover 9", then there exists, at least, an element ceP
such that %a">c>%" Hence, a >? c"
covers %". m
Definition (2-6): [1].

Let P be a poset. Then, the set, C (P) = {(a,b) : a covers b}c PxP, is called the
covering poset of P.

Proposition (2-7): [1].
Let (P, >) be a poset, then ((P),>)is a poset such that: for all (a,b) ,
C

" > b and this is a contradiction . Therefore, %"

(@',b") €C(P) , (a,b)> (a,'b")if andonlyif {(a,b)=(a’,b") or b>a"}

Theorem (2-8):
Let P be a (G, H)-poset. Then C(P) is also a (G,H)-poset with an action defined
by; 9(a,b)" = (%a", 9b") V (a,b) € C(P), g€G and heH .
Proof:
(i) ¥(a,b)® = (°a°,°b®) = (a,b) V (a,b) eC(P).
(“) gl(gZ(a’b)hZ)hl - (gl(gZahZ)hl 1 gl(gahZ)hl) - (glgzahZhl ’ glgzthhl) - (gng)(a’b)(hZhl)
V (a,b) eC(P) (g1, hl),(g2,h2)eGxH .
(iii) For all (a,b) , (a',b") € C(P), (g,h) € GxH , with (a',b")>(a,b) .
Then b'>a. So %™">9%" . Since (a,b),(a',b")eC(P) .
Then (%" , %", (@™ , %™ eC(P) . That is (%™, 9" > (9", %"). Hence
9(a',b")">9(a,b)" . Therefore, C(P) is a (G,H)-poset . m
83. (G, H)-Chains:
In this section, we study the (left, right) group actions on chains and when the
trivial action is the only one.
Definition (3-1): [2].

A poset P is called a chain (or totally ordered set) if; for all a,b €P : a>b or b>a.

Equivalently, the poset P is called a chain if for every two different elements a,b
of Peithera>borb>a .

From the definition above, we conclude that every element of a chain covers, at
most, one element and covered at most by one element. Also, any chain has, at most,
one maximal element 1 and one minimal element 0.

Remark (3-2): [2].

Any chain X of n elements is isomorphic to the set of natural numbers
n={1,2,...,n}.that is there exists a bijection function f:X — nsuchthat:

f(x))=f(x,)if andonlyif x; > x,.

Theorem (3-3):
Let X ={x}
If 9" = x;j then, X" =X Vi, ], i+r, j+rel.

be a (G, H)-chain and I be a set of successive integers with ...

iel
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Proof:

(i)Let i+1, j+1e 1. Since, X is a chain, then x
(2-3), 9x"i+1 covers 9x"; .

Since, 9" = xj then, Xj+1 covers 9" . So 9" = X;q1.

(i) Now, we shall use the mathematical induction to prove that 9x"i.1 = Xj+1 for i
=1. Suppose gxih+n = Xj+n for r = n and i+n, j+n€El. Since, X is a chain, then Xj+n+1 covers
Xi+n .50, 9XMisn+1 cOVErs 9XMun .Now, from 9x"n = 9x"j+n we have 9x"iins1 = Xjens1. Therefore
XN = X Vi i, jHTETL. m
Lemma (3-4):

Let X be a (G, H)-chain and (g,h)eGxH . If 9" = x;and xi<x', then 91x"1<x; Vv
XiEX .

covers x, and by proposition

i+1

Proof:

-1 1 -1 -1 -1 -1 -1 -1
oh = x, = 8 (gXih)h _8 Xth — 88 (gxih)hh _8 Xth N
-1
Xth =Xi.
gt -
Also, xi <xt=° X;

Definition (3-5):

Let P be a (G, H)-poset. For each peP the set:
Stab (G, H)(p) = {(g,h)eGxH : 9" = p} is called the stabilizer of p.

Proposition (3-6):

Let X be a (G, H)-chain and (g,h)eGxH with g‘1=g and h* = h . Then,
(9,h)eStabery(xi))  forall xj € X.

-1 -
Let 9" = .. Then, x; = & Xth . So, Xi = gxth . Suppose that x; # Xt. Then, either
Xi < Xt OF X¢ < Xi . If Xi < x¢then 9" < 9" .So, x¢ < xi . That is a contradiction.
Similarly, we have a contradiction if x: < X; . Hence, since X is a chain, then xi =
Xt. S0 9" = Xi.

Therefore, (g,h) e Stab(G,H)(xi) for all xieX. m
Theorem (3-7):

Let (X,<) be a (G, H)-chain. Then, the (G, H) action on X is only the trivial action
if X has O or 1.

Proof:
(i) Let 0 = x1eX and (g,h)eGxH . Suppose that 9x:" # x1, then x1<%:" [x1=0] .

S
Also, & Xih <x1 =0. So, this is a contradiction.
So, 9" = x1. Now, from theorem (3-3) we have 9" = x; for all xieX and
(9,h)eGxH.
(i) Let 1 = xeX and (g,h)eGxH . Suppose that 9x:" # x1, then 9x:"<x1[x1=1].
-1

-1 . "
Also, x1 < & th . S0, this is a contradiction.

So, %" = xi. Now, from theorem (3-3) we have %" = x; for all
xi € Xand (g,h) eGxH. m

-1 -1 -1 -1
h™ <8 xth . Therefore, © Xih <xi
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Corollary (3-8):

Let P = {pu,p2,...,pn} be a (G,H)-chain with p1>p2>...>pn. Then, P is a trivial (G,
H)-chain.
8.4 Maximal chains:

Finally, in this section, we will study the maximal chains in

(G, H)-posets and we shall observe that the study of these kinds of chains gives us some
indications on the type of some group actions on posets.

Definition (4-1): [2].
Let P be a poset and X={xi,xi+1,...,xj}g Pbe a chain such that

Xi < Xi+1 < ... <xj, then X is called a maximal chain in P if and only if:
(1) There is no element as ¢ € P such that: xi < Xi+1< ... <c <... <X;.
(ii) There is no element as k e P such that: k < x; or xj < k.
Proposition (4-2):

Let P be a (G, H)-poset and Y be a maximal chain in P. Then, 9Y" is also a
maximal chain in P with [9Y"| =|Y]|.
Proof:

(i) Since Y is a maximal chain in P, so we can say Y = {Xi,Xi+1,...,xj}such that X+1
covers x, for all i< r < j . So 9Y" = {&" , %" , . . ., %"} for
all (g,n)eGxH . Hence, 9" < 9" < ... < 9" .Suppose that there exists an element as
ceP such that 9" < 9xis" < ... <c<... <",

gt 8, hyhml_8 ' 8, hyh! g! ht g ' 8, hyhl
Then,® (°x;7)" <° ("Xjp1 )7 <<7 ¢ <<® (7x)

. g_l h—l
That is Xi < Xi+1 < ... < C
maximal chain.

(ii) Suppose that there exists an element beP such that b < gxih then:

-1 — -1 -
ngXih:>g bh 1<Xi=>g bh 1=Xi=>b=gxih.
Similarly, if gxih < athen gxjh =a. Therefore, gYh is a maximal chain.
Now, let the map f: Y — gYh is defined by: f(y) = gYh V y€eY.
f is injective map since : f(y1) = f(y2) = "= %" > y; =y,
Also f is onto since if x€9Y" then there exits yeY such that
x = %" Hence, fis bijection and [Y| = |°Y"| m
Definition (4-3): [2].

Let P be a poset and x € P. Then, the subset C of P is called a cutset of the element

x in P if every element of C is not comparable with x and all the maximal chains in P

cut with Cu{x}. We shall denote to this set
by cut x.

<...<Xxjand this is a contradiction since Y is a

Proposition (4-4):

Let P be a (G, H)-poset and C is the cutset of x P. Then, 9%C" is the
cutset of gxh. That is 9C" = cut 9x".

Proof:
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-1 -1

-1 . . -1
Lety e cut %" then ® y" " is not comparable with 9". So & yP

is not

: - g™ ht h : h
comparable with x. That is y € C. So, g(°* y  )he 9C" . That is ye?C".
Hence, cut 9x" < 9C".

Now let 9"e€9C". Then, seC. So, s is not comparable with x.
that is 9" is not comparable with 9x". So 9"e cut 9"
Therefore, 9C" = cut 9x". m

Theorem (4-5):

Let P be a finite (G, H)-poset with P(M) = {M1,Ma,....Mn} be the set of the
maximal chains in P with [M,|=|M;| if and only if i = j. Then, the trivial action is the
only action of (G, H) on P.

Proof:

To prove this theorem, we must first prove that °M}=M; for

1< i < n, after that we must show that 9x" = x for all x € Mi and (g,h)eGxH .

First part:

Our argument proceeds by mathematical induction on the number n to prove that
IM" = M; forall 1<i<n.

Let [Mi| =ri, V 1<i<nsuch that ri<ro<...<r.

(i) Let n=2. That is P(M) = {M1,M2} with [M_| # [M,|.

Suppose that 9M1" # M. By proposition(4-2) M1" is a maximal chain and |*M"|
= |Mythen 9M:"eP(M) . So IM;" = Mz. Hence, °Mi"| = |Mz| = |[My|.That is a
contradiction.So, 9M;" = M. Similarly, we have SM2" = M,.

(i) Now assume that n=k with SMi" = M; for all 1<i < k.

Let n=k+1. Since IMi" = M; for all 1<i <k,

Suppose that IMis1" # My then, IMis1" = M; for some 1< j < k. So, [Mk+1"| =
IMj| = ;. But PMks1"| = |[Mis1| = reer. Hence, 1j = reeq, that is j=k+1, and this is a
contradiction since k+1>j. S0, 9Mk+1" = M1 .

Second part:

Since {M;}iL, is the family of the maximal chains in P , then M; is a finite
maximal chain in P. Using corollary (3-8), we get : 9" = x for all xeM; , (g, h)eGxH
with 1<i<n.

Therefore, from part one, the action of (G, H) on P is the trivial
action only. m
Definition (4-6):

Let (H, *°°) be a group. Define H°? to be a group its elements are the element of
H and the product hy *®* hy =h, * hy .

Proposition (4-7):

Let P be a (G,H)-poset, so for all (g,h)eGxH there exists a permutation gph :
P— P defined by gph(p) = %" for all peP .

Also the map p : (GXH®) =Sp is defined by: p(g, h) = gph for all (g,h)eGXH
is @ homomorphism .
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Proof:

Similar to the proof in [8] .
Hence, from every (G, H)-poset, we can get a (GxH®P)-poset by the action ©@Vp=

9"V gEG, heH, peP. m
Definition (4-8):
A (G, H)-poset is called injective if the corresponding homomorphism p is
injective.
Proposition (4-9):

Let P (M) = {M1,M>,....Mn} be the set of the maximal chains in the (G,H)-poset
P. Let 9Mi" = M, then, IM;" = M for all j=i .

Proof:

Suppose that 9M;" = M; for some j=i. Then, 9M;" = 9M;" for some j=i. So
-1 — -1 -
8 ( gM]-h)h T8 ( BM;M)h " for some j#i.

Hence, M; = M; for some j=i. This is a contradiction since j=i implies
IP(M)|<n. Therefore, 9M;" = M for all j=i.m

Proposition (4-10):

Let P be an injective (G, H)-poset, and P(M) = {M1,M.,....Mn} be the family of
the maximal chains in P. Then:

(i) (IM;|=|m;]| if and only if i = j), implies that (G, H) = {(e,e)}.

(i) If |Ml| :|M2| :...=|Mn| , then |(G,H)|<n!.
(iii) If we reordered the maximal chains such that:

IN| =[N, | =...= N | # Ny =...= N #|Ny| =...=|N, |,
with NieP(M), 1<i<n, then : |(G,H)|<r! x(t-r)! x . . . x(n-K)! .
Proof:

(i) Since p((g,h)) = (@ p™(p) = p = I(p) for all peP and (g,h)eGxH , then (g,h) eker(p).
But ker(p ) = {e,e} because p is injective .

Then, (g,h) = (e,e) for all (g,h)eGxH . So, (G, H) =ker(p ) ={(e,e)}.

(i) [M,|=|M,|=...=|M,|. So for all MieP(M) and (g,h)eGxH there exists some

MeP(M) such that 9M;" = M¢.From proposition (4-7) ,we have SM;"# M for all j =i

So, the number of permutations on the maximal chains is n!.Now, since P is an
injective (G, H)-poset, then | (G, H)|<n! .

(iii) Applying (ii) on every part of equal parts of:

ING =[Ny == N N, ] == N # N =2 N == N
We get the number of permutations on the equal parts are,
rl, (t-r)!,...,(n-k)! respectively. Using the fundamental principle of counting, the number
of the permutations on the maximal chains is r! x(t-r)! x ... x(n-k)! . Since, P is an
injective (G, H)-poset, Then, |(G, H)|<r! x(t-rn)! x. .. x(n-k)! . m
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