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ABSTRACT  

In this paper, we deal with compatible (left, right)-group actions on posets, i.e; (G, 

H)-posets. Our main purpose in this work is to study the maximal chains in  (G, H)-

posets to observe that this study gives us indications on the type of some (G, H) actions 

on posets. Therefore, we shall study the behavior of the (G, H) actions on chains. 
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 ( أيسر، أيمن)أفعال زمرتية ثنائية جزئيًا مع   مرتبةالمجموعات الفي حول السلاسل العظمى 
 إيمان طاهر عبد العالي محمد

 جامعة الموصل التربية،  كليةقسم الرياضيات، 
 19/04/2012 تاريخ قبول البحث:                                    09/01/2012تاريخ استلام البحث: 

 الملخص
ثنائييية يانمييا س انسييرا ملييع الملمومييات المر نيية جائيييا  لاميير  ا   فييه اييلا النتييم  تعامييل ميير افعييا   مر ييية

ايينفنا الرئيسييه فييه اييلا النتييم .لاايية السياييل العجمييع فييه تعيي  الملمومييات المر نيية   ميير  ا  البييا ل ا للمنا.ليية  
احفعيا     جائيا   الته مل ها افعا   مر ية ثنائيية س حظجنيا اه ايلل النلااية  ع  نيا تعي  المعنيرات ميا  و يية ايلل

    الامر ية الثنائية ملع السيالللا انتتاج إلع .لااة الوك احفعا
 ايال مجمع، ملمومات مر نة جائيا ، أفعا   مر ية ثنائية الكلمات المفتاحية: 

§.1 Introduction: 

The idea of a group action of groups on sets can be extended on sets with 

additional mathematical structures, specially on posets. 

 A group action of a group  G  in a poset  P  can be considered as a group 

homomorphism  𝜌 : G         isom(P , P)  defined by 𝜌(g) = 𝜌g  where  𝜌g : P      P  is an 

isomorphism defined by  𝜌g(p) = gp for all  g ∈ G , p ∈ P . 

Such a poset P with a left action of G on it, is called a left G-poset, or simply a G-

poset. 

Also, since in general there are many such homomorphism 𝜌, so maybe there is 

many group actions of the group G on a poset P (at least the trivial action). Hence, by 

G-poset we mean only left group action of G on P. 

Equivalently, Let  G  be a group and  P  a poset , we say that  P  is a left  G-poset if 

for every  g∈G  and  p∈P  there corresponds a unique element  gP∈P such that for all 

p,q  P and g,g1,g2  G; 

 

(i) ep=p  

When condition (iii) is neglected, P is called a left G-set.This definition is slightly 

different from the definition given in [6].Similarly we define a right H-poset. We can 

conclude that every G-poset P can be considered as a right H-poset (and conversely) 

which is defined by: 
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gp =pg
−1

 for all pP and gG. 

Also the concept of a group action on sets can be extended to compatible left, right 

actions on sets. For more details see: [5], [7] and [8]. 

§.2 Covering (G, H)-posets: 

In this section, we give the definition of the (left, right) group actions on posets, 

and the covering poset of a given poset.  

So, we begin with the formal definition first, before proceeding to explain the 

intuitive concept behind it. 

Definition (2-1): [4]. 

A poset P is called (G,H)-poset if P is a left G-poset, a right H-poset and the two 

actions are compatible, that is for each gG, hH and pP there corresponds a unique 

element gph in P such that gph = g(ph) = (gp)h. 

Equivalently, let G and H be two groups and P a poset , we say that  P  is a  ( G , 

H )-poset if for every gG , hH and pP there corresponds a unique element gphP  

such that  

1. epe = p 

2. P is a left G-poset with the action defined by: gp = gpe ∀ pP, gG. 

3. P is a right H-poset with the action defined by: ph = eph ∀ pP, hH. 

4. (gp)h = g(ph) ∀ g∈G , h∈H and p∈P . 

5. p > q ⟹ gph  > gqh ∀ g∈G , h∈H and p,q∈P . 

When condition (5) is neglected, P is called a (G, H)-set. For more details see: [5], 

[6] and[8]. 

Example (2-2) 

Let the additive group Z acts on the set of the real numbers R by the action :   

na= a+n ∀ a∈R , n∈Z , and the additive group Q acts on R from the right by the action an 

= a-n ∀ a∈R , n∈Q , then R is a (Z , Q)-poset. 

Also, there exists a G-poset P which is also a right H-poset , but it's not a (G , H)-

poset , as in the following example; let G = H = C2 = {e,a} and P = {x,y,z,w,t,r} is a 

poset with x<y , z<w , t<r. Then, P is a G-poset with the action defined by : ax = z ,      
ay = w , at = t , ar = r , ep = p ∀ p∈P, and a right H-poset with the action defined by :      

xa = x , ya = y , za = r ,   wa = t , pe = p ∀ p∈P. But, P is not (G, H)-poset, that is since 

(az)a = za = t and a(za) = ar = r. 

Remark (2-3): 

 Any G-poset P can be considered as (G, H)-poset with the trivial right action of 

H on P. 

 Also, from the definition above, we see that a left G-poset P is one left action of 

G on P. But, for (G, H)-poset P there are two compatible group actions one is from the 

left and the other from the right.  

Definition (2-4): [2] 

Let P be a poset. We say that the element  a of  P  covers the element  b of  P if  

a>b  and there is no element  c∈P  such that  a>c>b . 

Proposition (2-5): 

Let P be a (G, H)-poset and a,bP with  a covers b , then  gah  covers gbh  ∀ g∈G 

and h∈H . 
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Proof: 

Suppose that  gah  does not cover  gbh , then there exists, at least, an element cP 

such that gah>c>gbh .Hence, bca hg 
−− 11

 and this is a contradiction . Therefore, gah  

covers gbh. ∎  

Definition (2-6): [1]. 

Let P be a poset. Then, the set, C (P) = {(a,b) : a covers b} P×P, is called the 

covering poset of P. 

Proposition (2-7): [1].  

Let (P, ≥) be a poset, then ),)(( 
C

P is a poset such that: for all (a,b) ,  

),( ba   C(P)  ,  }),(),{(),(),( aborbabaifonlyandifbaba
C

=  

Theorem (2-8):  

Let P be a (G, H)-poset. Then C(P) is also a (G,H)-poset with an action defined 

by; g(a,b)h = (gah , gbh)  ∀ (a,b) ∈ C(P) , g∈G and h∈H . 

Proof:  

(i) e(a,b)e = (eae,ebe) = (a,b)  ∀ (a,b) C(P). 

(ii) g1(g2(a,b)h2)h1 = (g1(g2ah2)h1 , g1(g2bh2)h1) = (g1g2ah2h1 , g1g2bh2h1) = (g1g2)(a,b)(h2h1) 

 ∀ (a,b) C(P)  (g1 , h1),(g2 , h2)∈G×H .                            

(iii) For all (a,b) , (a',b') ∈ C(P) , (g,h) ∈ G×H , with (a',b')≥(a,b) . 

Then b'≥a . So  gb'h≥gah . Since (a,b),(a',b')∈C(P) .  

Then (gah , gbh), (ga'h , gb'h) ∈C(P) . That is (ga'h, gb'h) ≥ (gah, gbh).   Hence 
g(a',b')h≥g(a,b)h . Therefore, C(P) is a (G,H)-poset . ∎ 

§3. (G, H)-Chains: 

In this section, we study the (left, right) group actions on chains and when the 

trivial action is the only one. 

Definition (3-1): [2]. 

A poset P is called a chain (or totally ordered set) if; for all a,b P : a ≥ b or b≥a. 

Equivalently, the poset P is called a chain if for every two different elements a,b 

of P either a > b or b > a  . 

From the definition above, we conclude that every element of a chain covers, at 

most, one element and covered at most by one element. Also, any chain has, at most, 

one maximal element 1 and one minimal element 0. 

Remark (3-2): [2]. 

Any chain X of n elements is isomorphic to the set of natural numbers 

}.,...,2,1{ nn = that is there exists a bijection function :: thatsuchnXf →  

.)()( 2121 xxifonlyandifxfxf   

Theorem (3-3): 

Let IiixX = }{ be a (G, H)-chain and I be a set of successive integers with …

...11  +− iii xxx  

If  gxi
h = xj  then, gxhi+r = xj+r ∀ i , j , i+r , j+r∈ I . 
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Proof: 

.1,1)( IjiLeti ++  Since, X is a chain, then 1+ix  covers ix  and by proposition 

(2-3), gxh
i+1 covers gxh

i . 

Since, gxh
i = xj then, xj+1 covers gxh

i . So gxh
i = xj+1. 

(ii) Now, we shall use the mathematical induction to prove that gxh
i+1 = xj+1 for   i 

=1. Suppose g𝑥𝑖+𝑛
ℎ

 = xj+n for r = n and i+n, j+n∈I. Since, X is a chain, then xi+n+1 covers 

xi+n .So, gxh
i+n+1 covers gxh

i+n .Now, from gxh
i+n = gxh

j+n we have gxh
i+n+1 = xj+n+1. Therefore 

, gxh
i+r = xj+r ∀ i , j , i+r , j+r ∈ I .  ■ 

Lemma (3-4): 

Let X be a (G, H)-chain and (g,h)G×H . If  gxh
i = xt and  xi<xt , then  g-1xi

h-1<xi ∀ 

xi∈X . 

Proof: 

gxi
h = xt ⇒  (

g−1
xi
h)h

−1g
 = xt

h−1g−1
 ⇒  (

gg−1
xi
h)hh

−1g
 = xt

h−1g−1
 ⇒ 

xt
h−1g−1

 = xi . 

Also, xi < xt ⇒ xi
h−1g−1

 < xt
h−1g−1

 . Therefore,  xi
h−1g−1

 < xi ∎ 

Definition (3-5): 

Let P be a (G, H)-poset. For each p∈P the set:  

Stab (G, H)(p) = {(g,h)∈G×H : gph = p} is called the stabilizer of p. 

Proposition (3-6):  

Let X be a (G, H)-chain and (g,h)G×H with gg =−1  and h-1 = h . Then, 

 (g,h)Stab(G,H)(xi)  for all xi  X. 

Let gxi
h = xt. Then, xi = xt

h−1g−1
. So, xi = gxth . Suppose that xi ≠ xt. Then, either 

xi < xt or xt < xi . If xi < xt then  gxi
h < gxt

h .So, xt < xi . That is a contradiction. 

Similarly, we have a contradiction if  xt < xi . Hence, since X is a chain, then xi = 

xt. So gxi
h = xi. 

Therefore, (g,h)Stab(G,H)(xi) for all xiX. ■ 

Theorem (3-7): 

Let (X,) be a (G, H)-chain. Then, the (G, H) action on X is only the trivial action 

if X has 0 or 1. 

Proof: 

(i) Let 0 = x1X and (g,h)G×H . Suppose that gx1
h ≠ x1, then x1<

gx1
h [x1=0] . 

Also, xi
h−1g−1

 <x1 = 0 . So, this is a contradiction.  

So, gx1
h = x1. Now, from theorem (3-3) we have gxi

h = xi for all xiX and 

(g,h)G×H. 

(ii) Let 1 = x1X and (g,h)G×H . Suppose that gx1
h ≠ x1, then gx1

h<x1[x1=1]. 

Also, x1 < x1
h−1g−1

 . So, this is a contradiction. 

So, gx1
h = x1. Now, from theorem (3-3) we have gxi

h = xi for all  

xi ∈ X and (g,h)  ∈ G×H . ∎ 
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Corollary (3-8): 

Let P = {p1,p2,…,pn} be a (G,H)-chain with p1>p2>…>pn. Then, P is a trivial (G, 

H)-chain. 

§.4 Maximal chains: 

Finally, in this section, we will study the maximal chains in  

(G, H)-posets and we shall observe that the study of these kinds of chains gives us some 

indications on the type of some group actions on posets. 

Definition (4-1): [2]. 

Let P be a poset and PxxxX jii = + },...,,{ 1 be a chain such that  

xi < xi+1 < … < xj, then X is called a maximal chain in P if and only if: 

(i) There is no element as c  P such that: xi < xi+1 < … < c < … < xj. 

(ii) There is no element as k  P such that: k < xi or xj < k. 

Proposition (4-2):  

Let P be a (G, H)-poset and Y be a maximal chain in P. Then, gYh is also a 

maximal chain in P with |gYh| = |Y|. 

Proof: 

(i) Since Y is a maximal chain in P , so we can say Y = {xi,xi+1,…,xj}such that xr+1 

covers xr for all  i< r < j . So ,gYh = {gxi
h , gxi+1

h , . . . , gxj
h} for  

all (g,h)G×H . Hence, gxi
h < gxi+1

h < . . . < gxj
h .Suppose that there exists an element as 

cP such that gxi
h < gxi+1

h < . . . < c < . . . < gxj
h . 

Then, (
g−1

xi
h)h

−1g
 < (

g−1
xi+1

h)h
−1g

 < .< ch
−1g−1
< .< (

g−1
xj
h)h

−1g
 

That is xi < xi+1 < . . . < ch
−1g−1

 < . . . < xj and this is a contradiction since Y is a 

maximal chain. 

(ii) Suppose that there exists an element bP such that b < gxih then: 

b ≤ gxi
h ⇒ bh

−1g−1
 < xi ⇒ bh

−1g−1
 = xi ⇒ b = gxi

h . 

 Similarly, if   gxih ≤ a then  gxjh = a . Therefore, gYh is a maximal chain. 

Now, let the map f: Y → gYh is defined by: f(y) = gYh ∀ y∈Y. 

f is injective map since : f(y1) = f(y2) ⇒ gy1
h = gy2

h ⇒ y1 = y2 . 

Also f is onto since if x∈gYh then there exits yY such that            

 x = gyh. Hence, f is bijection and |Y| = |gYh|  ■ 

Definition (4-3): [2]. 

Let P be a poset and x  P. Then, the subset C of P is called a cutset of the element 

x in P if every element of C is not comparable with x and all the maximal chains in P 

cut with C∪{x}. We shall denote to this set  

by cut x.  

Proposition (4-4): 

Let P be a (G, H)-poset and C is the cutset of x P. Then, gCh is the  

cutset of gxh. That is gCh = cut gxh. 

Proof:  
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Let y  cut gxh then yh
−1g−1

 is not comparable with gxh. So yh
−1g−1

 is not 

comparable with x. That is yh
−1g−1
∈ C. So, g( yh

−1g−1
)h∈ gCh . That is y∈gCh. 

Hence, cut gxh ⊆ gCh. 

Now let gsh∈gCh. Then, sC. So, s is not comparable with x. 

 that is gsh is not comparable with gxh. So gsh∈ cut gxh   . 

Therefore, gCh = cut gxh.  ∎ 

Theorem (4-5): 

Let P be a finite (G, H)-poset with P(M) = {M1,M2,…,Mn} be the set of the 

maximal chains in P with ji MM =  if and only if i = j. Then, the trivial action is the 

only action of (G, H) on P. 

Proof:  

To prove this theorem, we must first prove that 
i

MMh

i

g =  for  

1 i  n, after that we must show that gxh = x for all x  Mi and (g,h)G×H . 
 

First part: 

Our argument proceeds by mathematical induction on the number n to prove that 
gMi

h = Mi for all 1 i  n.  

Let |Mi| = ri,  ∀  1 i  n such that  r1<r2<…<rn. 

(i) Let n=2. That is P(M) = {M1,M2} with 1M  ≠  2M . 

Suppose that gM1h ≠ M1. By proposition(4-2) gM1
h is a maximal chain and |gM1

h| 

= |M1|,then gM1
h∈P(M) . So gM1

h = M2. Hence, |gM1
h| = |M2| = |M1|.That is a 

contradiction.So, gM1
h = M1. Similarly, we have gM2

h = M2. 

(ii) Now assume that n=k with gMih = Mi for all 1 i  k. 

Let n=k+1. Since gMih = Mi for all 1 i  k. 

Suppose that gMk+1
h ≠ Mk+1 then, gMk+1

h = Mj for some 1 j  k. So, |gMk+1
h| = 

|Mj| = rj. But |gMk+1
h| = |Mk+1| = rk+1. Hence, rj = rk+1, that is j=k+1, and this is a 

contradiction since k+1>j. So, gMk+1
h = Mk+1 . 

 

Second part: 

Since {Mi}i=1
n

 is the family of the maximal chains in P , then Mi is a finite 

maximal chain in P. Using corollary (3-8), we get : gxh = x for all xMi , (g , h)G×H 

with 1 i  n. 

Therefore, from part one, the action of (G, H) on P is the trivial  

action only. ■ 

Definition (4-6): 

Let (H, *op) be a group. Define  Hop  to be a group its elements are the element of  

H  and the product  h1 *
op h2 = h2 * h1 . 

Proposition (4-7): 

Let  P  be a (G,H)-poset , so for all  (g,h)∈G×H  there exists a permutation  g𝜌h : 

P→ P defined by  g𝜌h(p) = gph  for all p∈P . 

Also the map  𝜌 : (G×Hop) →S|P| is defined by: 𝜌(g, h) = g𝜌h for all (g,h)∈G×H  

is a homomorphism . 
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Proof: 

Similar to the proof in [8] .                                                                         

Hence, from every (G, H)-poset, we can get a (G×Hop)-poset by the action  (g,h)p= 
gph ∀ g∈G, h∈H, p∈P. ∎ 

Definition (4-8):  

A (G, H)-poset is called injective if the corresponding homomorphism  𝜌  is 

injective.   

Proposition (4-9):  

Let P (M) = {M1,M2,…,Mn} be the set of the maximal chains in the (G,H)-poset 

P. Let gMi
h = Mi, then, gMj

h ≠ Mt for all ij   . 

Proof:  

Suppose that gMj
h = Mi for some ij  . Then, gMj

h = gMi
h for some ij  . So 

(
g−1

Mj
h)h

−1g
 = (

g−1
Mi

h)h
−1g

 for some ij  . 

Hence, Mj = Mi for some ij  . This is a contradiction since ij   implies

nMP )( . Therefore, gMj
h ≠ Mt for all ij  . ■ 

Proposition (4-10):  

Let P be an injective (G, H)-poset, and P(M) = {M1,M2,…,Mn} be the family of 

the maximal chains in P. Then:  

(i) ( ji MM =  if and only if i = j), implies that (G, H) = {(e,e)}. 

(ii) If nMMM === ...21  , then |(G,H)|≤n ! . 

(iii) If we reordered the maximal chains such that: 

nttrr NNNNNNN ======= ++ ......... 1121 , 

with NiP(M), 1 i  n , then : |(G,H)|≤r! x(t-r)! x . . . x(n-k)! . 

Proof:  

(i) Since ρ((g,h)) = (g ρ h)(p) = p = I(p) for all pP and (g,h)G×H , then (g,h)ker(ρ). 

But ker(ρ ) = {e,e} because  ρ  is injective . 

Then, (g,h) = (e,e) for all (g,h)G×H . So, (G, H) =ker(ρ ) = {(e,e)}. 

(ii) nMMM === ...21 . So for all MiP(M) and (g,h)G×H there exists some 

MtP(M) such that gMj
h = Mt.From proposition (4-7) ,we have gMj

h≠ Mt for all ij    

So, the number of permutations on the maximal chains is n!.Now, since P is an 

injective (G, H)-poset, then | (G, H)|≤n! . 

(iii) Applying (ii) on every part of equal parts of:  

nkttrr NNNNNNNN ======== +++ ............ 11121  

We get the number of permutations on the equal parts are,  

r!, (t-r)!,…,(n-k)! respectively. Using the fundamental principle of counting, the number 

of the permutations on the maximal chains is r! x(t-r)! x … x(n-k)! . Since, P is an 

injective (G, H)-poset,Then, |(G, H)|≤r! x(t-r)! x . . . x(n-k)! . ■ 
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