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ABSTRACT
The following open problem state that: If ¢: A— B is a dense

range homomorphism from Banach algebra A into Banach algebra B

such that B is semisimple. Is ¢ automatically continuous? (see[1])

In [5] given a partial solution of the above problem as follows:
Let A and B be a Fréchet algebras such that Bis semisimple, the

spectral radius rg is continuous on B and the spectral radius rp is
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continuous at zero. If ¢: A— B is a dense range homomorphism, then¢g

Is automatically continuous.
In this paper, we prove the following result:
If ¢: A— B is a dense range homomorphism from a complete

normed nonassociative algebra A into a complete normed nonassociative
algebra B such that B is semisimple and multiplication algebra M(B)
of B is also semisimple, the spectral radius py g, is continuous on

M(B) and the spectral radius py () is continuous at zero, then ¢ is
automatically continuous.

1. Introduction
If A and B are Banach algebras, B is semisimple and ¢ : A—> B

IS a dense range homomorphism, then the continuity of ¢ is along-

standing open problem.
This is perhaps the most interesting open problem remains
unsolved in automatic continuity theory of the Banach algebras.(see[1]).
We recall that from [4], the radical of an algebra A , denoted by

rad A , is the intersection of all maximal left(right) ideals in A . The
algebra A is called semisimple if rad A ={0}. In [5], for the algebra
A the spectrum of an element xe A is the set of all A e such that
Al—x is not invertible in A and is denoted by Sp(x)(or by Sp,(x)).
Thus Sp(x)={Ael :11—xe Inv(A)}

Also let A be Banach algebra, then the spectral radius of x (with
respect to A ) is denoted by r(x) (or r,(x)) and is defined by the
formula r(x)= Sup{ 4|14 € Sp(x )}.

If (A)|]) is a Banach algebra (not necessarily commutative) then
1
rA(x)=r|]i_)menH”stH.
It is known that for any algebra A we have:
radA={xe A:r,(xy)=0 for every y e A}.

From [9], for X,Y normed spaces and T a linear mapping from X
into Y, then the separating subspace S(T ) of T is defined as follows:

S(T)={yeY :3{x }= X,x, >0, Tx, - y,where ne IN}.

Proposition 1.1
Let A,B be normed algebras (complete). If @: A— B s a dense

range homomorphism, then S(¢) is a closed ideal of B.
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Proof: see[6].
We recall from [2] that, an annihilator of algebra A (denoted by

Ann( A)) is defined as follows: Ann(A)={xe A:ax=xa=0,Vae A}
and we say that A is zero annihilator if Ann(A)={0}. In [7] the
multiplication algebra of A denoted by M( A) is defined as a subalgebra
of L(A) (the algebra of all linear mapping on A) generated by following

operators:
ld,:A> A L, :A>A R, :A> A
ar> ld,(a)=a ar L, (a)=xa a R, (a)=ax

Where a,x e A, which are called identity, left and right multiplication
operators respectively.

Proposition 1.2 [7]
Let A,B be normed algebras, ¢: A—>B is a dense range

homomorphism.  Then ¢3:M(A)—> M(B) is a dense range
homomorphism given by the relation :

HF=p(F)p VFeM(A) ... (1).

Proposition 1.3
If ¢ is a dense range homomorphism from a normed algebra A

into a normed algebra B, then
1. S(4)(B)=S(9).
2. Lsy)URg(y) < S(#), where Lgiyy={L, : xeS(4)} ,
Rss) =1R. 1 xe S(9)} .
Proof:
1. To prove that S(&)(B)g5(¢), we first prove that

S($)((A)cS(4). Let acA, let TeS(4) and {F,} be a
sequence of continuous operators in M(A), such that{F,}—0 and

BT,
From strange operator topology (SOT ), we obtain {Fn(a)}—>0
and

(F @) ={F )@= BF M@= BF)@@)]->T ¥@).
Therefore, T(gd(a))eS(¢), for all TeS(4), aeA. Ie.
S(4)(¢(A))= S(¢). Note that,
S(4)(B)=S(8)(¢(A))

giﬁ)m)

cS(4)=S(4) (by proposition(1.1)).
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2. Let beS(#). Then 3a,}c A such that lima,=0 and

n—oo

limg(a,)=b. Therefore, limL, =0 and limLy,,=L,. This

N—o0 nN—c0

implies that L, e S(¢4). Similarly, we can proof that R, € S(&).

2. Fundamental Results
In this section we prove our fundamental following results:

Theorem 2.1
Let ¢ : A— B be a homomorphism with dense range from normed

algebra A into normed algebra B then S(¢3)is a closed ideal of M(B).
Proof:
Clearly S(@) is a closed linear subspace of M(B). Let G e S(¢)

and Z ed(M(A)). There exists a sequence {F,} in M(A) such that
{F.}>0 and {¢3( = )})—)G. Note that, Z=g(F) for some
FeM(A). Hence,

{FF,}>0 and {(FF,)}=d(F )$({F.})—> 2G e S(8). similarly,

GZ e S($). Therefore, S(g) isan ideal of g(M(A)) . Hence,

H(M(A)S(B), S(#)P(M(A))c S(4) and this implies

A(M(A)S(p) < S(#) and S(#)(M(A)) = S(8).
Thus M(B)S(#)< S(4) and S(#)M(B)c S(4) as required.gg

Theorem 2.2
Let ¢: A— B be a dense range homomorphism from complete

normed nonassociative algebra A into complete normed nonassociative
algebra B such that B is semisimple and M (B )is also semisimple, the

spectral radius py, (g, is continuous on M(B) and the spectral radius
Pm(ay is continuous at zero, then ¢ is automatically continuous.

Proof:
According to the proposition (1.2) there exists homomorphism with

dense range ¢ : M(A)— M(B) given by the relation ¢F =g(F )g.

For every G e S(¢3) There exists a sequence {Fn}g M(A) such
that {F,}—=0 in M(A) and g({F,})=>G in M(B). Since pya, is
continuous at zero by assumption, we have pya(F,)—>0, then

Puce)($(F, ) >0 .
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On the other hand, again by continuity of py ., we have

pM(B)(&( F.)) = pus)(G). Hence,
PM(B)(G)=O ----------------- (2)

Since @¢: M(A)—> M(B) is a dense range homomorphism by
theorem(2.1) S(¢3)is an ideal in M(B). Thus for every Ze M(B),
GZ e S(q?). By (2) we get py(g,(GZ)=0. Since M(B) is semisimple,
we have:
rad M(B)=1{G € M(B):pys,(GZ)=0 for every Z e M(B ){=1{0}.
Therefore, Gerad M(B). So S(4)cradM(B). Hence, we have
S(#)={0} and according the proposition (1.3)(2) we get
Lssy) URs(4) S S(¢) and this imply Ls(s)=Rs(sy=0. Thus,
S(¢)c Ann(B) and since Ann(B)=0 then S(¢#)=0. By closed graph
theorem we get ¢ continuous.gg

3. An application example

We recall from [8] that , the intersection of full subalgebras of an
associative algebra A is another full subalgebra of A it follows that for
any nonempty subset S of A there is a smallest full subalgebra of A
which contains S. This subalgebra will be called the full subalgebra of
A generated byS.

Now let A Dbe a nonassociative algebra. The full subalgebra of
L(A) generated by L,UR, will be called the full multiplication

algebra of A and will be denoted by FM(A).
Consider the set W ( A) of those elements a in A for which L, and
R, belong to the Jacobson radical of FM(A), W( A)is a subspace of A

SO it contains a largest subspace invariant under the algebra of operators
FM(A). This last subspace, which is clearly a two-sided ideal of A, will

be called the weak radical of A and denoted by w-Rad(A).
Let A be nonassociative algebra and let C be any subalgebra of
L(A) such that Ly, UR, cCcFM(A). As in the definition of weak

radical we can consider the largest C -invariant subspace of A consisting
of elements a such that L, and R, lie in the Jacobson radical of C . This

subspace will be called the C-radical of A and denoted by
C — Rad( A). The ultra-weak radical of A(uw-Rad(A)) is defined as the

sum of all the C-radicals of A when C runs through the set of all
subalgebras of L( A) satisfying L, UR, cCcFM(A).
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Proposition 3.1

Let ¢ be a homomorphism from a complete normed nonassociative

algebra A into a complete normed nonassociative algebra B. Assume

that the ultra-weak radical of B is zero. Then T is continuous.
Proof: (see[3],[8]).
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