
Journal of Education and Science

Vol. 27, No.2, 2018, pp. 48-57
ISSN 1812-125X

http://edusj.mosuljournals.com

48

Better Adaptive Text Compression Scheme

Duha Amir Sultan

Dept. of Biology/ Education College of Girls/ University of Mosul

تاريخ القبول 17/04/2012تاريخ الاستلام
07/11/2012

 الخلاصة

لكبس البيدااداتو حاةدي أش ر ددددددددددددددهر طديق اللرق ر ط اللريقد ال قترة عديددي ظهرت طرق
و ث طورت طيق اللريق أش LZ77حالت رطلق عليها اسددددددددد Lempelح Zivأش قبل العال يش

و حالت رعلددن اتددا LZSSلتظهر طريقدد يدديدددي ط Szymanskiو Storerقبددل العددال يش
ف طاتيش اللريقتيش حي يع اصدو ثيير حخدة رفضدل أقارا ساداسقاتها سعي رط طبقن عل

لكبس البيااات دت أاح ال لف أش اليدناأيكي اللرق الأخرى الت تنضوي تحن تصنيف اللرق
اليي ال شدددمر أادددبقاص حالنص النص) أةزط البيااات اليادددار ل الي يش اد اط رطول تلابق بيش

أش الياددار ل الي يش ث سإت اطيشو ير البحث ال قترة ف طيا البحث تعت ي أب اللريق سدديشددمر
 رعلن أش الي يش ل اليادددددددددددددارو عل الرر رط طيق اللريق تحتان حقتاا رطول اوعا أا و لا راها

 اتي ثبس اكبر للبيااات

Abstract
A data compression scheme suggested by Ziv and Lempel, LZ77, is

applied to text compression. A slightly modified version suggested by

Storer and Szymanski ,LZSS, is found to achieve compression ratios as

good as most existing schemes for a wide range of texts. In these two

methods and all other dynamic methods, a text file is searched from left to

right to find the longest match between the lookahead buffer (the

previously encoded text) and the characters to be encoded. The method

suggested in this work depends the searching in two directions, from left

to right and from right to left, although this process takes more time, better

compression results were obtained.

http://edusj.mosuljournals.com/

 Better Adaptive Text Compression Scheme

49

Introduction
Data compression is the business of reducing the amount of space

needed to store files on computers or of reducing the amount of time taken

to transmit the information over a channel of given bandwidth [7]. Data

stored on a computer falls into two groups: First: digital representation of

data that is continuous in nature such as images, sounds, video

sequences,…., because the form stored is already the quantized version of

the original, it is appropriate for further approximation to be permitted and

lossy compression techniques can be used to obtain extremely compact

representation. Second: data such as text, archival images of historical

documents,…. Where the original source of data must be capable of being

reconstructed exactly, so lossless compression methods can be used to

compact and save these kinds of data [17].

In this work, we concentrate on lossless compression, precisely on

adaptive methods (explained in section 3), specially LZSS, which is an

improvement of LZ77, a table of previous works (from 1977 to 2005) also

presented in this section, a development is applied to LZSS generating a

new scheme (named as LZD) with better compression results, the idea of

LZD is explained in details in section 4. Finally, and in section 5, some

experimental results on some files are showed followed by a simple

comparison between LZSS and LZD methods.

Types of Compression Methods
Compression methods can be classified into many groups (Fig. 2.1),

as they have been designed for a wide variety of types of information such

as text, images, and sound. These usually call for quite different

approaches to the problem because of the different types of information

they contain.

In general, compression methods are divided into two groups: Lossy and

Lossless:

- Lossy, or irreversible, compression is used for digitized analogue signals

such as speech and pictures.

- Lossless, reversible or noiseless, compression (where the original can be

recovered exactly from it's compressed version) is particularly important

for text, since in this situation errors are not exactly accepted [2].

Lossless compression methods, on the other hand, can be assorted to

Online and Offline.

- Online methods accomplish the compression in one pass.

- Offline methods process the entire input string several times before the

final encoding strategy is determined [25].

 Better Adaptive Text Compression Scheme

50

Another categorization can be made to static, semiadaptive, and adaptive

compression schemes.

- In Static schemes the rules used to encode the string are kept fixed during

the process.

- Semiadaptive schemes differ from the previous in using a different

model for each encoded text.

- Adaptive (or dynamic) methods changes the rules according to the

characteristics of the text, this is normally implemented as an online

learning process [2].

Finally, an other assortment can be made, according to the entropy

theory, (where the entropy is a measure of the information content of the

text to give a limit of the best possible compression) to Entropy and Non-

entropy methods.

- Entropy methods are used when the objective is to maximize

compression.

- In Non-entropy methods speed of operation, economy of memory usage

are desirable features beside the aim of compression [22].

More details can be found in [2], [25], [17], [7], [10], and [22]

 Compression methods groups

 Loss of compression encoding entropy

 Data passes rules theory

 Lossy lossless online offline static semiadaptive adaptive entropy non-entropy

Fig. 2.1 Types of Compression Methods

Adaptive Methods
Almost all practical adaptive encoders are encompressed by a family

of algorithms derived from the work of Ziv and Lempel. The essence is

that the phrases are replaced with a pointer to where they have occurred

earlier in the text. This family of schemes is called Ziv_lempel

compression, abbreviated as LZ compression [6]. This method adapt

quickly to a new topic, but it is also able to code short function words

because they appear so frequently.

Decoding a text that has been compressed in this manner is straight

forward; the decoder simply replaces a pointer with the already decoded

text that it points to. In practice, LZ coding achieves good compression,

and an important feature is that decoding can be very fast.

One form of a pointer is a pair (m,l) that represents the phrase of l

characters starting at position m of the input string. The pointer is

 Better Adaptive Text Compression Scheme

51

constructed from the earlier text of a predefined window. The window may

be unrestricted (growing window) or it may restricted to a fixed_size

window of the previous N characters, where N is typically several

thousands [6].

- The growing window offers better compression by making more

substrings available. As the window becomes larger, however, the

encoding may slow down because of the time taken to search for matching

substrings; compression may get worse because pointer must be larger;

and if memory runs out the window may have to be discarded; giving poor

compression until it grows again.

- A fixed_size window avoids all these problems, but it has fewer

substrings available as targets of pointers. Within the window chosen,

limiting the set of substrings that may be the target of pointers makes the

pointers smaller and encoding faster.

The table below labels the previous works and the most significant

variations of LZ compression, and summarizes the main distinguishing

features among them:-

Table 2.1 Principal LZ Variations

LZ77 [27] (1977) pointers and characters alternate, pointers indicates a

substring in the previous N characters.

LZR [18] (1981) pointers and characters alternate, pointers indicates a

substring anywhere in the previous characters.

LZSS [2] (1986) pointers and characters are distinguished by a flag bit, pointers

indicate a substring in the previous N characters.

LZH [3] (1987) same as LZSS, except Huffman coding is used for

pointers on a second pass.

LZ78 [28] (1978) pointers and characters alternate, pointers indicate a

previously phrased substrings.

LZW [24] (1984) the output contains pointers only, pointers indicates a

previously phrased substring, pointers are of fixed size.

LZC [20] (1985) the output contains pointers only, pointers indicate a

previously phrased substring.

LZT [21] (1987) same as LZC, but with phrases in a LRU list.

LZMW [16] (1984) same as LZT, but phrases are built by concatenating the

previous two phrases.

LZJ [11] (1985) the output contains pointers only, pointers indicates a

substring anywhere in the previous characters.

LZFG [9] (1989) pointers select a node in a trie, strings in a trie are from a

sliding window.

 Better Adaptive Text Compression Scheme

52

LZRW [5] (1991) refers to variants of the LZ77 with an emphasis on

 improving compression speed through the use of hash table.

LZX [5] (1998) it was publicly released as an Amiga file archiver.

LZMA [5] (1998) uses a dictionary scheme similar to LZ77 with a variable

size up to 4GB.

LZWL [5] (2005) work with syllables

3.1- LZ77 Scheme:-
LZ77 was the first form of LZ compression to be published [27]. In

this scheme, pointers denote phrases in a fixed-size window that precedes

the coding position. There is a maximum length for substrings that may be

replaced by a pointer , given by the parameter F (typically 10-20). These

restrictions allow LZ77 to be implemented using a "sliding window" of N

characters. Of these, the first N-F have already been encoded and the last

F constitute a lookahead buffer.

To encode a character, the first N-F characters of the window are

reached to find the longest match with the lookahead buffer. The match

may overlap with the buffer but obviously can not be the buffer itself.

The longest match is then coded into the triple (i,j,a), where i is the

offset of the longest match from the lookahead buffer, j is the length of the

match, and a is the first character that did not match the substring in the

window. The window is then shifted right j+1 characters, ready for another

coding step. Attaching the explicit character to each pointer ensures that

coding can proceed even if no match is found for the first character of the

lookahead buffer [13].

From this notation, the string "a b b a a b b b a b a b"

After completing the coding process the output would be:

(0,0,a)(0,0,b)(2,1,a)(1,1,a)(1,3,b)(3,2,b)(8,3,null)

3.2- LZSS Scheme:-
The output of the LZ77 is a series of triples, which can also be viewed

as a series of alternating pointers and characters. The use of explicit

character followed every pointer is wasteful in practice because it could

often be included as part of the next pointer. LZSS addresses this problem

by using a free mixture of pointers and characters, the later being included

whenever a pointer would take more space than the characters it codes. A

window of N characters is used in the same way as for LZ77, so the pointer

size is fixed. An extra bit is added to each pointer or character to

distinguish between them, and the output is packed to eliminate unused

bits [2]. The LZSS algorithm is:

If the coding process

reaches this character
Lookahead

buffer

 Better Adaptive Text Compression Scheme

53

 While lookahead buffer no empty do

 get a pointer (offset,length) to the longest match

 in the window for the lookahead buffer

 if length>p then

 output the pointer (offset,length)

 shift window N characters

 else

 output first character in lookahead buffer

 shift window one character

where p is the number of characters (or bytes) taken by a pointer [2].

If we take the same string in section 3.1: abbaabbbabab , the coded string

would be:

(0,a)(0,b)(0,b)(0,a)(1,1,3),(1,3,2)(1,8,3)

The output pointer contains either two or three elements, the first element

in two cases is a single distinguishing bit, if it is 0 means that there is no

coding and a complete character would be found in the coded file, if it is 1

a pointer of offset and match length is followed.

4- LZD (the proposed) Scheme:-
LZD is abbreviated from LZSS with two-Dimension search, so it uses

the structure of LZSS scheme. LZD encoder is parameterized by N, the

size of the window in the text, and F the maximum of the substring that

may be replaced by a pointer as in LZSS.

The main difference between the two methods is that in LZSS the

searching process for a match is implemented using greedy algorithm and

encoding proceeds from left to right, while in LZD the search for a match

proceeds from left to right then return back from right to left, this gives

better chance to find a longer match between the already encoded string

and the previously encoded text. For example, if we take the two words

"MACHINE" and "CAMERA", in LZSS there is no similar phrase

between them, but if we use LZD, the first underlined phrase of the word

CAMERA will simulate the phrase "MAC" of the other word, when

backward search is accomplished.

A single bit is added to distinguish whether the substring is coded in

forward and backward manner.

More time is needed in using LZD than LZSS scheme, to days this is

not very important, as the CPU's have become very cheap and with

different high speeds, so all the recent schemes have concentrated on

achieving better possible compression rather than the time they take.

The algorithm of LZD is:-
 While lookahead buffer not empty do

 Get a pointer (offset1,for_length)

 Better Adaptive Text Compression Scheme

54

 Get a pointer (offset2,back_length)

 If for_length>back_length then

 Output the pointer(offset1,for_length)

 Shift the window for_length characters

 Else

 Output the pointer(offset2,back_length)

 Shift the window back_length characters

If the algorithm is implemented on the string: abbaabbbabab , then the

output would be: (0,a) (0,b) (1,0,2,2) (1,1,1,3) (1,1,3,2) (1,1,8,3)

First bit , i , of the pointer used as LZSS (to distinguish if the output

is a character or a pointer), the second bit , j, (which is either 0 or 1) used

to distinguish if the match is from left to right (if the bit is 1) or from right

to left (if the bit is 0), bits k and l represent the offset and the length of the

longest match respectively (as in LZSS).

To decode the compressed string: first the size of the lookahead

buffer is zero and a single bit is read from the coded string or file, if it is

0,then the code of a complete character (8 bits) is read (and the size of the

lookahead buffer increased by 1), if it is 1, the three element of the pointer

j,k,l must be read, and l characters are taken from the lookahead buffer

starting at position or character k, depending on the value of j, if it is 0,

the search starts from the lookahead buffer down to 0, and vice versa, if j

is 1.

Experimental Results
In this section, the result of some experiments with the coding

scheme are presented using a variety of different sorts of text files and

respectable performance is achieved with all of them. Empirical

comparison between the enhanced method and the standard one are also

described. These results are obtained by a program written in C++

language.

Below the files used in experiments; the name of each file beside its type

is presented:-

1- Huge1, Huge2, Huge3: text files collected from a set of research

abstracts. (size: 1Mb-5Mb).

2- Small: a help file taken from C-language package. (17970 characters

(≈17KB)).

3- Lzd.c: a commented C program- the same program used in compression,

(10649 characters).

4- Data: a collection of characters and numeric data in text format (24000

characters (≈24 KB)).

Same as LZSS Pointers contain 4 elements (i,j,k,l)

 Better Adaptive Text Compression Scheme

55

Table 5.1 shows the tests ran on those files, the size of the file after

compression is shown under the file name, the second row of the table

shows the compressed file as a percentage of the original using LZSS

method. Table 5.2 shows the same tests, but using LZD method.

Table 5.1 LZSS compression performance
 File name Huge1 Huge2 Huge3 small Lzd.c data

 File size

1.5 MB

(1572864)

 chars.

 3MB

(3145728)

 chars.

 5MB

(5242880)

 chars.

 17970

 chars.

10649

 chars.

24000

 chars.

 File size after

 compression 979894 2105985 4006540 11570 7602 15970

 Size after

 compression

(as a

percentage)

 62.2% 66.9% 76.4% 64.3% 71.3% 66.5%

Table 5.2 LZD compression performance

File name Huge1 Huge2 Huge3 small Lzd.c data

 File size

 1.5 MB

(1572864)

 chars.

 3MB

(3145728)

 chars.

 5MB

(5242880)

 chars.

 17970

 chars.

10649

 chars.

24000

 chars.

 File size after

 compression
 841482 1898029 3544186 10873 6745 12623

 Size after

 compression

(as a percentage)

 53.4% 60.3% 67.6% 60.5% 63.3% 52.5%

 Better Adaptive Text Compression Scheme

56

Fig. 5.1 LZSS and LZD compression performance

The two methods are implemented on the same five files with the

same window size(N=4096 bytes or characters), which is a middle window

size, as if the window becomes larger the search and encoding process may

slow down, with smaller window size, the chance of finding a match

between the lookahead buffer and the encoded text will be decreased

causes the compression performance to be decreased .

From the tables, it has been obviously seen that LZD achieved better

compression performance than LZSS, the difference in compression

performance between the two methods falls in the range of 4-10%, better

result was obtained with the "data" file, means that this file contains more

contrast phrases than others.

LZD can be considered as a development of LZSS, which is a type

of lossless compression methods, means that there is no loss of data and

the file after decompression is completely similar to the original.

Refrences

1- Banikazemi M., "LZB Data Compression with Bounded References", Data

Compression Conference (2009).

2- Bell T.C., "Better OPM/L Text Compression", IEEE Transactions on

Communication", Vol.COM-34,No.12 (Dec.), 1176-1182 (1986).

3- Brent R.P., "A Linear Algorithm for Data Compression", Australian

Computer Journal, Vol.19, No.2, 64-68 (1987).

4- Castelli V., Lastras-Montano L.A., "Bounds on Expansion in LZ77-Like

Coding", IEEE Transactions on Information Theory, Vol. 52, Issue 5,

1974-1989 (2006).

5- David S., "data Compression, The Complete Reference", Springer, 4th

Edition (2006).

62.2
66.9

76.4

64.3
71.3

66.5

53.4
60.3

67.6
60.563.3

52.5

0

10

20

30

40

50

60

70

80

90

huge1huge2huge3smalllzd.cdata

files names

p
e
rc

e
n

ta
g

e
 o

f
fi

le
 s

iz
e

(a
ft

e
r

c
o

m
p

re
s
s
io

n
)

lzss

lzd

 Better Adaptive Text Compression Scheme

57

6- Diego Arroyuelo, Gonzalo Navaro, "Smaller and Faster Lempel-Ziv

Indices", Citeseer (2010).

7- En-Hui Yang, Kieffer J.C., "Efficient Universal Lossless Data Compression

Algorithms Based on a greedy Context-Dependent Sequential Grammar

Transform", IEEE Transactions on Information Theory, Vol.46, Issue 3,

755-777 (2000).

8- Ferreira Artur, Oliveira Arlindo, Figueiredo Mario, "Time and Memory

Efficient Lempel-Ziv Compression Using Suffix Arrays", arXiv (2009).

9- Fiala E.R., Green D.H., "Data Compression with Finite Windows",

Communication of the ACM, Vol.32, No. 4, 940-505 (1989).

10- Istle J., Mandelbaun P., Regentova E., "On line Compression on ASCII

Files", Information Technology: Coding and Computing, Vol.1, 755-

759 (2004).

11- Jakobsson, M, "Compression of Characters Strings by an Adaptive

Dictionary", BIT Vol.32, No.4, 593-603 (1985).

12- Jan Lansky, and Michal Zemlica, "Text Compression : Syllables", 32-45,

ISBN 80-01-03204 (2005).

13- Kreft S., Navarro G., "LZ77-Like Compression with Fast Random Access",

"Data Compression Conference", 239-248 (2010).

14- Little G., Diamond J., "Optimum String Match Choices in LZSS", Data

Compression Conference (2010).

15- Lonardi S., Szpankowski W., Ward M.D., "Error Resilient LZ77 Data

Compression: Algorithms, Analysis, and Experiments", IEEE

Transactions on Information Theory, Vol. 35, Issue 5, 1799-1813

(2007).

16- Miller V.S., Wegman M.N., "Variations on a Theme by Ziv and Lempel",

NATO ASI Series, Vol.F12, Springer-Verlag, 131-140 (1984).

17- Moffat A., Bell T.C., Witten I. H., "Lossless Compression for Text and

Images", E.4, Coding and Information Theory, (Oct.), 1-49 (1995).

18- Rodeh M., Pratt V.R., Even S., "Linear Algorithm for Data Compression via

String Matching", Journal of the ACM, Vol.28, No.1, 16-24 (1981).

19- Storer J.A., Szymanski T.G., "Data Compression via Textual Substitution",

Journal of the ACM, Vol.29, No.4, 928-951 (1982).

20- Thomas S.W., McKie J., Davies S., Turkowski K., Woods J.A., Orost J.W.,

Compress Program and Documentation, version 4 (1985).

21- Tischer P., "A Modefied Lempel-Ziv-Welch Data Compression Scheme",

Australian Computer Science Communication, Vol.9, No.1, 262-272

(1987).

22- Umesh S. Bhadade, Prof. A.I. Trivedi, "Text Compression Methods Based

on Dictionaries", International Journal of Computer Applications,Vol.8,

Issue:7, 30-37 (2010).

23- Wei-ling Chang, Xiao-Chun Yun, Bin- Xing Fang, Shu-peng Wang, "The

Block LZSS Compression Algorithm", Data Compression Conference

(2009).

24- Welch T.A., "A Technique for High Performance Data Compression", IEEE

Computer, Vol.17, No.6, 8-19 (1984).

 Better Adaptive Text Compression Scheme

58

25- Witten I.H., Cleary J.G., "Modeling for Text Compression" Bell T M

Computing Surveys, Vol.21, No.4, (Dec.), 557-591 (1989).

26- Yuan Jing, "The Combinational Application of LZSS and LZW Algorithms

for Compression Based on Huffman", Proceedings of 2011 International

Conference on Electronics and Optoelectronics, Vol. 1, Pages:V1-397-

V1-399 (2011).

27- Ziv J,. Lempel A., "A Universal Algorithm for Sequential Data

Compression", IEEE Transactions on Information Theory, Vol.It-23,

No.3, 337-343 (1977).

28- Ziv J., Lempel A., "Compression of Individual Sequences via Variable Rate

Coding", IEEE Transactions on Information Theory, It-24, No.5, 530-

536 (1978).

