EDUSJ, Vol, 32, No: 2, 2023 (101-113)

=

Journal of Education and Science (ISSN 1812-125X)

W (GERER

o\ ling

www.edusj.mosuljournals.com

Numerical Solution for Solving Linear Fractional Differential Equations using
Chebyshev Wavelets

I. A. Fathi®? and K. I. Ibraheem

Department of Mathematics, College of Education for Pure Science, University of Mosul, Mosul, Iraq

Article information Abstract
Avrticle history: In this paper, a numerical method for solving linear fractional differential equations
ii‘éz;igf f;:’ifg’;’;égzg’ using Chebyshev wavelets matrices has been presented. Fractional differential equations
Available online: June 01, 2023 have received great attention in the recent period due to the expansion of their uses in
many applications, It is difficult to find a solution to them by the analytical method due to
Keywords: the presence of derivatives with fractional orders. Therefore, we resort to numerical
gz‘zlr’;'tsi‘gﬁ‘élvl\\fa‘;fi'jt solutions. The use of wavelets in solving these equations is a relatively new method, as it
Linear Fractional Differential was found to give more accurate results than other methods. We created Chebyshev
Equations matrices by utilizing Chebyshev sequences, where these matrices can be created in
Block Pulse Function different sizes, and the larger the matrix size, The results are more accurate. Chebyshev
N ; wavelet matrices are characterized by their speed when compared to other wavelet
orrespondence: . . . . . . . . .
I. A Fathi matrices. The algorithm converts fractional differential equations into algebraic equations
inaam.21esp33@student.uomosul.e by using the derivative of an operational matrix of the pulsing mass of the fractional
du.ig integral with Chebyshev matrices. Then, the solution is found by applying the algorithm

and comparing it with the exact solution. The results are convergent with very small
errors. To prove the effectiveness and applicability of the algorithm, for validation, and
show how the results are close to the exact solution, several examples have been solved.

DOI:10.33899/edusj.2023.138081.1326, ©Authors, 2023, College of Education for Pure Sciences, University of Mosul.
This is an open access article under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).

Introduction

Fractional calculus has a wide range of applications in various fields such as science, engineering, finance, and technology
[1,2]. The first concept of fractional calculus was introduced in 1695 when Leibniz wrote a letter to L’Hopital discussing the
law of general differentiation and L’Hopital posed the question of what happens when the order of the derivative is 1/2.
Leibniz's response was “This was an apparent paradox, but that it would lead to useful consequences in the future” [3]. For
many years, fractional differential equations were primarily studied within the realm of pure mathematics. However, in recent
decades, researchers have discovered their importance in a number of fields such as engineering and physics [4]. Enormous
analytical, semi-analytical, and numerical methods have been developed to solve fractional differential equations [5]. While
analytical solutions can be difficult to obtain, researchers found an interest in numerical solutions. Some popular methods
include the Adomian decomposition method [6], the homotopy method [7], and various wavelet methods. Wavelets are a
modern field in numerical solutions and include Haar wavelets [8,9], Legendre wavelets [10,11], Chebyshev wavelets [12],
and Bernstein wavelets [13]. The work aims to present a method for using Chebyshev wavelets to solve fractional differential
equations. The Chebyshev matrices were created by using the Chebyshev sequence, where they can be created in different
sizes and the larger the matrix size, the results are more accurate. When compared to other wavelet matrices, Chebyshev
wavelets are characterized by their speed. The fractional differential equations are converted into algebraic equations. Then,
the solution is found and compared to the exact solution.
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Preliminaries and definitions

Fractional differential equations are equations in which the derivatives appear in the form (d* / dx*), where a is not
necessarily an integer. Several definitions of fractional integrals and derivatives have been proposed. However, Caputo and
Riemann-Liouville are the most used in fractional calculus [14].

Definition 1[15]. The Riemann-Liouville fractional integral operator J*of order a is given as:

Jv(t)= %fot(t -2)*1lv(2)dz, a>o (@)
J*v(®)=v(t) )
The properties of the operator J* are given as follows:

i) JYPv(0)=)F v(t) ®)
i) JEJ* v()=J*Fv(t) 4)
_ TI@+1)

III) ]atr_ m tetr (5)
Definition 2. [15]. The Caputo definition of a fractional derivative is given as:

D(t)= "D (t)= - (nl_a) Jy = 2" v (z) dz (6)

Where—-1< a<n,neN,t>0

Note that

DY*v(t)=v(t) ) (7
n-— £k

J“D=v(®) = v(®) - ; v® (0) ®

Chebyshev Wavelet and convergence of the Chebyshev wavelet
Chebyshev Wavelet
Wavelets are relatively a mathematical new area that is implemented in various fields such as numerical analysis, Image

processing, signal processing, and sound pressure. They are a set of functions generated by the expansion and transformation
of a specific function which is known as the "mother wavelet" (y(t)) [15,16]

Lo b
Wop(® = lal 29 (Z2) ,abeRa=0 )
If the parameter restricts to integer values, that is a = ag* , = nbyag® , ag > 1, by > 0, these yields:
k
Win(t) = laol2 W(agt — nby) knez, (10)

for particular values of ap = 2and by = 1
Chebyshev wavelets ¥,, ., (t) = Y (k,n, m, t), have four arguments,

k

Wt = {Zsz(z"t -2n+1), 2",{—_11 St<om ’ (11)
0 otherwise

where
\/iﬁ ,m=0,

Tn@® =1 (12)

\ET;n(t) ,m>0,

AndkeNn=1,2..,21m=0,1,..,.M -1,

T, (t) are the well-known Chebyshev polynomials of order m and satisfy the followings:

Ty =1,

T,(t) = t,

T, () =2tT, (t) — T, (1), m =1,23,.. (13)

It was noticed that Chebyshev wavelets are orthogonal concerning the weight function w,(t) = w(2*t — 2n + 1)
A function v(t) is defined over the interval [0,1) and may be extended into Chebyshev wavelets as follows:

102



EDUSJ, Vol, 32, No: 2, 2023 (101-113)

2O =) ) ComWam(® (14)
Waveletnzge?:igients are Cpm = (V(), P (1)) (15)

Assume that v(t) can be approximated in terms of Chebyshev wavelets as:

2k-1p1
PO ) Y ComWum(® = Y@ = T(®) (16)
n=1 m=0
where € and ¥(t) are two 2¥-1M x 1 matrices given by:
C=[C10,C11,,C1m-1,C20,C21, ., Copp—1, o) Col-1 g, ooe) Coie=1 yy_4 1" 17
w(t) = [llll,O' lljl,l! L] q’l,M—lt lI"Z,O! lI"Z,l' L] lI’Z,M—li L] q’zk_lym ey lIJZI"'_1,M—1]T (18)

and T indicates transposition
Let {t;} = {t3%7™ be a set of collocation points as follows:

=2t =12, 21y (19)
2km

The Chebyshev wavelet matrix ¢’ as

¢k’><k’ = [w(tl):lp(tz): w(t3), Jll}(tk’)] (20)

Where k' = 2k-1

Let’s provide the following example to illustrate the Chebyshev wavelet matrix creation when k=2 and M = 3 the
Chebyshev wavelet matrix is expressed as

1.1284 1.1284 1.1284 0 0 0
~1.0638 0 1.0638 0 0 0
—0.1773 -1.5958 —0.1773 0 0 0

Poxe= 0 0 0 1.1284 1.1284 1.1284

0 0 0 -1.0638 0 1.0638
0 0 0 -0.1773 -1.5958 —0.1773

Convergence of the Chebyshev Wavelet

By eq. (16), 7(t) converge to v(t) as k approach oo. The error can be bound, as decided by the following theorem.
Theorem: let the function v : [0, 1] — R can be derived n times and vec™[0, 1]. Then T(t) approximate v(t) with mean error
given in the form

~ 2
Il v(t) —v(t) I< msup|v(")(t)| .

Proof. Divide the [0,1] into parts Iy, = ;’;—jz,’("—_l

using the maximum error estimate , Obtains

],m =1,..,2%1 degree of B(t) < n,n - v, ¥(t) » v(t) when k - oo,

I v(t) —B(t) I>= fol[v(t) —o(t)]?dx =Y, flk,m[v(t) —P(®))*dt <Y flk,m[”(t) —-D(0))%dt <
Yo,

2 2
Ik,m[ gn(k—1)g4np) suptelk,m |v(n) (t) |]2dt < [—Z“(k_1)4"n! S'upte[o’l] |'U(n) (t) |]2

?(t) is the interpolating polynomial of degree n. An upper bound is given by taking the square roots. When M is constant, the
greater the value of K, the approximation solution is more accurate.
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Operational Matrix of Fractional Integration

The integration of the vector ¥ (t) defined in (18) can be shown as fott[)(z)dz = p P(t)
The fractional integration of order a of vector ¥ (t) in (18) can be shown as

JP® =p*P@®

where p® is the k' x k' operational matrix of fractional integration of order a [17].
An k’-set of Block Pulse Functions (BPFs) is defined as

i (i+1)
b,(t) = {1’ W St<T
0, otherwise,
wherei =0,1,2,..., (k' — 1).
0, i1
Bi(Ob:© =, ), 7
1 0,
fbi (z)b,(2)dz = {l
0 k'’

The Chebyshev wavelet matrix can also be expanded to an k’-set of (BPFs) as

Y(t) = Py sp By ()

where B/ (t) = [bo(t) b1(t) ... bi(t) ... by _;(®)]T

In Reference [18], have given the Block Pulse operational matrix of the fractional integration F® as following:

UJ“By)(t) ~ F By (t)

where
1 7y 2 13
0 1 n n
F® = L 1 0 0 1 N
T K T(@+2)] :
0O 0 0 O
0O 0 0 O

s = (S + 1)a+1 _ Zsa+1 + (S _ 1)(;!+17

Now let us derive the Chebyshev wavelet operational matrix of fractional integration

(R"MIGES M)

where matrix pg/ ., is called the Chebyshev wavelet operational matrix of fractional integration.
Using equations (25),(26) we obtain

TP )(@®) = Ui Bir ) () = oy U By ) () = @i F¥By (t)

From equations (28),(29), we obtain

P Wi (©) = Dy D s Bir (1) = @yt FEB o (8)
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i+1
i=1

0

Ni'-1

M -2

77kf—3
UL
1

s=12,..,k-1

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)
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Then py . is given by
pZ’xk’ = ¢k'><k'Fa¢I:’1xk’ (31)

As an example the Chebyshev wavelet operational matrix of the fractional integrationfor=2 ,M = 3,anda = 0.5 is

0.5116 0.2228 -0.0353 0.4582 —0.1067 0.0304
—0.0579 0.2243 0.1287 0.0743 —-0.0449 0.0192

os _|—0.2120 —-0.2046 0.1854 —0.2498 0.0501 —0.0115
Pexe = 0 0 0 0.5116 0.2228 —0.0353
0 0 0 —0.0579 0.2243  0.1287
0 0 0 —0.2120 -0.2046 0.1854

Applications and results

The use of the proposed algorithm is illustrated by solving examples of fractional differential equations. We find the
numerical solution of these equations and then compare it to the exact solution. In order to test the validity of the presented
method, the absolute error and relative error between the two solutions have been calculated. The MATLAB software is
performed for the computations and reported the results in terms of the largest absolute error (ME) and the relative error (Root
mean square) (RMS).

ME=Max{|exact — y|}, y is a numerical solution. (32)

RMS=nll\/ |Y(exact — y)|? (33)
Example 1.[19]

1 5
D2y(t) — 2Dy(t) + D2y(t) + y(t) = 6t — 612 + %tﬁ + 3
y(0) =0, y'(0)=0, 0<t<i1,
The exact solution is y(t) = t3

Using eq. (16), let y(t) = CT ¢ (t)
Taking the integral of the equation, where the order of integration is equal to the order of the highest derivative.
1 5
J2(D%y(t) — 2Dy(t) + Dzy(t) + y(t) = 6t — 6% + % tz + 13)
3 7 9
T (1-2p+p2 +p?) () = 5263 - D gt 1 16)(:(—2))t2+@t5

r(4) I(5) 5Vm (& r6)

The next step is to find both €T ,and y(t)
Table 1: The results of Example 1.

Value of Kand M ME RMS

K=2 , M=3 0.0107 0.0043

K=2 , M=4 0.0063 0.0024

K=4 , M=2 0.0017 6.0458e-04
K=4 , M=4 4,3330e-04 1.5141e-04
K=5 , M=5 7.0592e-05 2.4239e-05
K=5 , M=10 1.7753e-05 6.0605e-06
K=6 , M=11 3.6798e-06 1.2522e-06
K=7 , M=12 7.7414e-07 2.6306e-07
K=8 , M=10 2.7883e-07 9.4700e-08

105



EDUSJ, Vol, 32, No: 2, 2023 (101-113)

1 T T T T T T T T T

09 f —  Exact 4
* Numerical
0.7}
0.6 |

0.5

0.2

01 r

O 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig 1. The exact solution and numerical solution when k = 4,M = 4

Example 2.[20]

2 2-a__1 1-a 2 _
r(3—-a) t r(2-a) t +i t

y(0)=0, y(0)=0 0<t<1, a>0,
The exact solution is y(t) = t*> — t

Dy(®) +y() =

Let y(8) = C" $(¢)

Taking the integral of the equation, where the order of integration is equal to the order of the highest derivative.

a a — 2 2—a __ 1 1-a 2 _
J Dy +y®) =55t raat tt-Y

Using both eq. (28), and (31) yields

T a _L 2 _L ra) 2+a __ r'2) 1+a
C'a+p9y() = r(3) ¢ r2) t+ r3+o) t r(2+a) t

Next step is to find both €T ,and y(t)

106



EDUSJ, Vol, 32, No: 2, 2023 (101-113)

Table 2: The results of Example 2, when @ = 0.5

Value of K and M ME RMS

K=2 , M=3 0.0050 0.0018

K=2 , M=4 0.0035 0.0010

K=4 , M=2 0.0014 2.6310e-04

K=4 , M=4 5.2470e-04 6.7969e-05

K=5, M=5 1.4070e-04 1.1183e-05

K=5 , M=10 5.1140e-05 2.8359¢-06

K=6 , M=11 1.6004e-05 5.9258e-07

K=7 , M=12 5.0344e-06 1.2543e-07

K=8 , M=10 2.3547e-06 4,5315e-08

O T T T T T T T T T
Exact

20.05 - Numerical i
01 F .
-0.15 8
02 F 8
_025 1 1 1 1 1 1 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig 2. The exact solution and numerical solution when k = 4,M = 4

Example 3.[21]

1 3
D2y(t) + 0.5D2y(t) + y(£) = 2 + r(;s) &+ 2,

y(0)=0, y'(0)=0 0<t<1
The exact solution is y(t) = t?
Let y(8) = CT (¢)
Taking the integral of the equation, where the order of integration is equal to the order of the highest derivative.

) 3
J*(D?*y(t) + 0.5D2y(t) + y(t) = 2 + lN(le) £+ 1)
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3
; ER _ 2 2, 1 .35 T34
c (1+0.5p2+p )lp(t)—r(g)t trasnt  tist

Next step is to find both €T ,and y(t)

Table 3: The results of Example 3.

Value of K and M ME RMS

K=2 , M=3 0.0029 0.0013

K=2 , M=4 0.0017 7.3514e-04

K=4 , M=2 4.4824e-04 1.8350e-04

K=4 , M=4 1.1473e-04 4.5851e-05

K=5 , M=5 1.8613e-05 7.3347e-06

K=5 , M=10 4.6745e-06 1.8336e-06

K=6 , M=11 9.6820e-07 3.7884e-07

K=7 , M=12 2.0362e-07 7.9582e-08

k=8 , M=10 7.3330e-08 2.8650e-08

1 T T T T T T T T
09k —  Exact _
* Numerical
0.8 | .
0.7 | .
0.6 | 1
0.5 .
0.4 .
03+ 1
0.2t .
0.1 .
O 1 1 1 1 1 1 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig 3. The exact solution and numerical solution when k = 4,M = 4
Example 4. [21]

120 24

D?y(t) + 6D°3y(t) + By(t) = —12t* + 3 (20 +0 (r(s. ) t'7 — r@.7 t°'7> + Bt — t))

B=1 ,0=0.5 y(0 =0, y(0)=0

The exact solution is y(t) = t*(t — 1)
Let y(t) = C" (¢)

Taking the integral of the equation, where the order of integration is equal to the order of the highest derivative.
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T 1.7 2 _ +5 _ 4 60 67 12 .57, 1.7 1.4
CTa+0.5p" + p?)y(t) =t t+r(7_7)t r(6.7)t +5t 5t

The next step is to find both €T ,and y(t)

Table 4: The results of Example 4

Value of K and M ME RMS
K=2 , M=3 2.7429e-04 1.0958e-04
K=2 , M=4 1.4815e-04 6.1799e-05
K=4 , M=2 3.9598e-05 1.6414e-05
K=4 , M=4 1.0047e-05 4.1287e-06
K=5 , M=5 1.6116e-06 6.6314e-07
K=5 , M=10 4.0302e-07 1.6597e-07
K=6 , M=11 8.3276e-08 3.4291e-08
K=7 , M=12 1.7494e-08 7.2036e-09
K=8 , M=10 6.2980e-09 2.5933e-09
O T T T T T T T
001+ — Exact
* Numerical

-0.02

-0.03 |

-0.04 |

-0.05 |

-0.06 |

-0.07 |

-0.08 |

_009 1 1 1 1 1 1 1 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig 4. The exact solution and numerical solution when k = 4,M = 4

Example 5.[22]
3 3
D2y(t) + Dzy(t) + y(t) = t3 + 6t + %ti

y(0)=0, y(0)=0 ’

The exact solution is y(t) = 3

Let y(®) = C" $(¢)
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Taking the integral of the equation, where the order of integration is equal to the order of the highest derivative.

Using both eq. (28), and (31) yields

5
cr (1+P%+p2)tl)(t) =TWs 1 61D ys +L1)<ig))

r(6) HONEE NG

2

r(z)

The next step is to find both €T ,and y(t)

7

tz

Table 5: The results of Example 5

Value of Kand M ME RMS
K=2 , M=3 0.0056 0.0025
K=2 , M=4 0.0033 0.0014
K=4 , M=2 9.0024e-04 3.7724e-04
K=4 , M=4 2.3469e-04 9.6941e-05
K=5 , M=5 3.8662e-05 1.5864e-05
K=5 , M=10 9.7827e-06 4.0093e-06
K=6 , M=11 2.0380e-06 8.3534e-07
K=7 , M=12 4.3025e-07 1.7645e-07
K=8 , M=10 1.5523e-07 6.3689e-08
1 T T T T T T T T T
091 —  Exact
0.8 - * Numerical
0.7
0.6
0.5
0.4
0.3
0.2+
0.1
0 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09

Fig 5. The exact solution and numerical solution when k = 4,M = 4

Example 6.[23]

1 2 3
Dzy(t) = t* — y(t) + —5-t2
I
y(0) =0, y'(0)=0,

0 < t < 1, the exact solution is y(t) = t?
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> 1 2 3
J? (Dzy(t) —y(®) =t + ﬁtz)

2

1
T > _TB) 4,25, 2 .2
¢ (I + pz) YO = r(3.5) =+ r(3) t

The next step is to find both €T ,and y(t)

Table 6: The results of Example 6

Value of Kand M ME RMS
K=2 , M=3 0.0024 0.0018
K=2 , M=4 0.0014 0.0010
K=4 , M=2 3.5374e-04 2.6802e-04
K=4 , M=4 8.9978e-05 6.8571e-05
K=5, M=5 1.4598e-05 1.1190e-05
K=5 , M=10 3.6732e-06 2.8250e-06
K=6 , M=11 7.6266e-07 5.8811e-07
K=7 , M=12 1.6072e-07 1.2417e-07
K=8 , M=10 5.7944¢-08 4.4806e-08
1 T T T T T
09r ——— Exact
N ]

08 L Numerical

0.7

0.6

0.5

04 r

0.3

0.2

0.1r

O 1 1 1 |

0 0.1 0.2 0.3 0.4

Fig 6. The exact solution and numerical solution when k = 4,M = 4

Conclusion

The Chebyshev wavelets matrix is constructed and used the block pulse operational matrix derivative of fractional
integration to solve linear fractional differential equations. This was performed by converting them into algebraic equations,
these equations to be solved using MATLAB software. The solution is convergent between the solution arising from the use of
the algorithm and the exact solution, with a small and decreasing error rate as the matrix size increases. Six examples were
presented to demonstrate the effectiveness of the proposed method.
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