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1. Introduction

The main text formatlntegro-differential equations have several applications in mathematics, science, and technology.
Integro-differential equations appear often in fluid mechanics, biological models, solid-state physics, kinetics in chemistry,
and so on. Most problems are difficult to solve, especially analytically[1-5]. However, analytical solutions to Integro-
differential equations do not exist or are difficult to find. Therefore, various numerical approaches for solving Integro-
differential equations have been developed.

Consider the Fredholm integro-differential equation as the form

b
Y = FO0) +A f k(x, G (y (D), )

with initial conditions
y(@) = a,y'(a) =B,

where the function f € L?[a, b) and the kernel k € L?[a, b), and G(y(t)) is a nonlinear function defined on the interval
[a, b], the solution of the integro-differential equation is denoted by the unknown function y(x).

Wavelet theory is a relatively new and still developing method in applied mathematics. Since 1991, many kinds of wavelet
methods have been used to solve different kinds of integro-differential equations numerically, and the possibility is to
apply the method of Haar wavelets, which are the mathematically easiest wavelets. Haar wavelets have also been utilized
for solving the two-dimensional nonlinear mixed Volterra-Fredholm-Hammerstein integral equation as well as the delay
Volterra-Fredholm integral equation[6-7].
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The Haar wavelet technique was employed by Lepik. [8], Babolian. [9], and Aziz et al. [10] to solve nonlinear Fredholm
integral equations. In fact, the application of the Leibnitz rule based on the Haar wavelet collocation technique in
numerical analysis is not new, and the Haar wavelets provide a number of benefits, such as simplicity, orthogonality, and
extremely compact support. Sparse representation, fast transformation, and the ability to generate a quick algorithm for
matrix representation are the major benefits of the Haar wavelets approach. Because the Haar basis is the simplest instance
of a spline wavelet, resulting in the polynomial degree being set to zero, the computing costs of Haar wavelets are
extremely minimal. So, we utilize them to solve a number of problems by converting them into a system of non-linear
equations at collocation points and solving them with Matlab. In [11-13], Haar wavelet approaches are applied to different
problems and fields.

The present study is prepared as follows: The Haar wavelet properties and definitions are covered in section 2. In sections
3 and 4, the convergence analysis of the Haar wavelets and the Haar wavelet operational matrix and its integrals are given
respectively. In section 5, the solution procedure is presented. Finally, some numerical experiments with conclusions are
shown in sections 6 and 7, respectively.

2. Haar Wavelet Properties

Among the different wavelet kinds, Haar wavelets are the most basic. They are real-line step functions that can only accept
the numbers 0, 1, and (—1). We used the Haar wavelet method because it is fast, easy, flexible, and simple to compute. A
family of switching rectangular wave forms with variable amplitudes is known as the Haar functions. Haar wavelets are
generally defined on the interval [0,1], but in many applications, they are formed on the interval [a, b]. The interval [a, b]
is subdivided into m equal parts. In this case, the orthogonal set of Haar functions is defined as [14], [15] on the interval
[a,b].

2.1. Haar wavelets and their definitions
Haar wavelets are created by integrating pairs of piecewise constant functions. Furthermore, the Haar functions are
orthogonal, which makes them an excellent transform basis. Because of discontinuities at breaking points, the Haar

functions are not differentiable.

Suppose that the integration interval [a, b] is partitioned into 2/** subintervals of equal length, where

Ax = %.] € N represents the highest degree of resolution. The translation and dilation parameters are indicated by j =
2

0,1,2,..,J and k = 0,1,2, ... 27 — 1 correspondingly. The Haar family is defined a

1 ifx€[é,8,)

hi(x) = {—1ifx € {§,,&) (2)
0 otherwise
where §; = %,Ez = kt:'s, and &; = % while m = 2/,

The index i in Eq.(2) is evaluated by using i = m + k + 1, and in the case of minimal valuesm = 1,k = 0, then i = 2.
The maximal value of i is N = 2/*1, For i > 2, Eq.(2) is accurate.
The Haar scaling function at the value of i = 1 is defined as follows:

1 ifx €[ab)
hy (x) = ' 3
1) { 0 otherwise ®)

The collocation Points is given by x; = % where I = 1,2,...,N, and H(i, 1) = h;(x;) is the Haar coefficient matrix

which is a square matrix of the dimension N x N. If we take ] = 3 we obtain the Harr coefficient matrix of order 16 which
is defined as follows:
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1
1 1 1 1 -1 -1 -1 -1 O 0 0 0 0 0 0 0
(U 0 0 0 0 0 0 1 1 1 1 -1 -1 -1 -1
1 1 -1 -1 O 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 -1 -1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 -1 -1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 -1 -1
H(16,16) = 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0f
0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0
(U 0 0 0 0 1 -1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1

2.2 Approximation of function by Haar wavelets

If £ (x) is any function on [a, b] with finite energy and square intelligibility, then f € L2[a, b) can be represented as an
infinite sum of Haar wavelets

[ee]

F0) =) @),

i=1

The Haar coefficients are represented as a;. The series can be truncated to finite terms if f is a piecewise constant or must
be approximated by a piecewise constant at each subinterval, as shown below.

m

)= ah).

i=1
2.3 Convergence analysis of the Haar wavelets

In this section, we will discuss the convergence analysis of the Haar wavelets by integration Eq.(2), from 0 to x, and using
the initial conditions with properties of approximation of the functions of Haar wavelets, then we have

Y@ = atpr+ | -0 (i anhn(o) ac+ | R Z Z asbyhi ()1 (0 Z @ ha(©) |
n=0 i=0 j=0 n=0

Now we suppose that y(x) € C'[0,1] with |y'(x)| < L, for each x € (0,1). To approximate the function y(x) we suppose
the following relation

k-1

Vel = ) anha(0),

where k = 20D = 0,1,2, ..., then

Y@ =% @ = ) anhn(©),

n=27+1

So, we construct the norm of the given equation as follows:
1

1 2
ly(x) = v QO i2p0,1) = (f (lan(x) — uk(x)lz)dx)
0
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1
e 2

= (fol n;ﬂ a, h, (%) i a, hn(x)dX>

a=27+1

1
=< Y oS a fo 1hn(x)hﬁ(x)dx>

n=27+1 f=o7+1
(o]

1
= (an)z-
nept+1

Therefore

[ee)

Iy () = v ()l 1y = Z a2,

n=27+1

where a,, is the inner product between y(x) and h, (x).
1
By substituting ¥, (x) = h,,(x) = m2H(mx — k), k = 0,1,

19
an, = J. m2 H(mx — k)y(x)dx
0

Substituting Eq.(2) in Eq.(5) we obtain

k+0.5 k+1
1 m m
a, = mz2 f£ y(x)dx — s y(x)dx.
m

There exist x, and x, according to the mean value theorem

k+05 k+0.5 k+1
—<x < and <x, < ,
m m m

e (50 - (11 09), )

By simplification the above equation, we obtain

1
a, = PN (y(x) — y(x2),

therefore

1
a =5 (y(x) — y(x))’
and

1
(x; — x1)%y"*(xy) <-—=B>

2
a,; = =
n 4m3

2m
From Eq.(4), we have

[ee)

IyCO) = Y@ gy = . @

j=r+1 \n=m

BN

4

.., — 1, ininner product of a,,, we get

13
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1

= g ZEram?,
_B%1
T 3 k%
Therefore
1
Iy G) = 7@y = 0 ()

2.4 The Haar wavelet operational matrix and its integrals

The following equation
X

PLi(x) = j hi(0)de

0

defines the operational matrix of integration, which is N x N square matrix. The form

X

Pgyq:(x) =f Py ;(t)dt,where i =1,2,..N
0

and s = 1,2, ..., n is used to develop a general operational matrix. According to the function P, ;(x) and using Eq.(2)
contracted the following integrals

x—§& ifx€[§,&)
Pi(x) =§& —x ifx € {&,&) (6)
0 elsewhere
~ (- §)? if x € [, &)
1 1 .
P,(x) = &0 ifxe{ ) )
1 .
TmZ ifx € [63, 1)
0 elsewhere
HEEEAL if x € [, 6)
PO -1 CE OR (PRI L P R Y @®)
— (- &) if x € [£,1)
0 elsewhere
and the fourth integrals can be formed as the followin
—(x— &) if x € [&,8,)
T b LR S .
’ 1 1 .
3 (x=&)*+ PP— ifx €[é,1)
0 elsewhere
The generalized integrals of Haar functions of the order n are considered as below:
FICIE0 ifx € [&,6)
P = {5 =6 — 2= £)%) ifx € {8, &) (10)
@ -8 =2 - &) + (x - &)°) ifx € [§5,1)
0 elsewhere

If we choose different values for J, for example, if we take J = 2, then N = 8, so we get the following matrices
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1
P,;(8,8) 16~

1
Pl,i(8'8) E =

'1/32
1/32
1/32

1/32
0
0
0
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9/32
9/32
9/32
0
7/32
0
0
0

CoOoROR R R

S OO RrRPROWWWw

O R OO WuUlul

0

SO RrRr OO R NNV

R OOk ONVY

0

_
[uy

SR OO WouU

Uy
w
Uy
9

PO O OoOWoOoOWw
PO OOk O

25/32 49/32 81/32 121/32
25/32 49/32 79/32 103/32
23/32 31/32

0

1/4
1/32

0
0

1/4

0

7/32

0
0

1

1/32

1/4
1/4

1/32

0

But if we select ] = 3, then N = 16, we obtain the following matrices

1
Pl’i(16,16)§ =

and P,;(16,16) is given as

25

25

25
0

N
w

= 2048

CoOcCOoOoCOoOOROCOOROR R R
COOCOOOOTWO OOV O VO

SO OO OO R WO OO

SCocooco0cOCcOoOOCRrROOOROR R PP
COOCOCO0OCOROCOOWO WWW

49 81
49 81
49 79

CcCoococoocoNmMo oo
cocoococormmoor o

OO OO OO RrRrROOOOWOUILUTLLUL
OO OO OO R OOOORFRONNINV

121
121
103
0
32

9
0
0
8
8
7
0
0
0
0
0

1
9/32
1/32
1/32
7/32

0

9 11 13 15 17 19 21 23
9 11 13 15 15 13 11 9
7 5 3 1 0 0 0 0
o o o o0 1 3 5 7
o o 0 0 O O 0 O
1 3 3 1 0 0 0 O
o 0 o o 1 3 3 1
o 0 0 O O O 0 O
o o 0 0O O O O0 O
o o 0 O O O 0 O
1 1 0 0 O O O0 O
0o 0 1 1 0 O 0 O
o 0 0 o0 1 1 0 O
o o 0 0 O 0 1 1
o o 0 0O O O 0 O
o 0 0 0O O O 0 O
169 225 289 361 441 529
169 225 287 343 391 431
119 127 128 128 128 128
0 0 1 9 25 49
32 32 32 32 32 32
23 31 32 32 32 32
0 0 1 9 23 31
0 0 0 0 0 0
8 8 8 8 8 8
8 8 8 8 8 8
8 8 8 8 8 8
1 7 8 8 8 8
0 0 1 7 8 8
0 0 0 0 1 7
0 0 0 0 0 0
0 0 0 0 0 0

15

169/32 225/32]

119/32 127/32
1
31/32
1/4
1/4
1/4

1
23/32
1/4
1/4
1/4
1/32

N
o

ORPR OO OO OOR,ROOONONV

625

463

128
79
32
32
32

O = 00 00O

7/32 |

N
~

ORPR OO OO OoOOoOWOoOOoOOoOUTLOoO U

729
487
128
103
32
32
32

S N 00

\S]
O

P O OO0 WOOoOOoOWOoOWw

841
503
128
119
32
32
32

= 00 00 OO ™D

w
=

P OO OO0 OOROOO RO

9617
511
128
127
32
32
32
31
g |

N OO 000
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2.5 The solution procedure

This section introduced a Leibnitz-Haar wavelet collocation technique for solving a second-order nonlinear Fredholm
integro-differential equation by reducing it to an equivalent differential equation with initial conditions. The Leibnitz rule
for integral differentiation is used in the conversion [16].
Consider the following integral equation:

g2(x)
F(x)=2 k(x, t)y(t)dt (1)

g1(x)

therefore, the differentiation of integrals exists in Eq.(1) and is derived by

g2(x) Ak (x,t)
0x

dg,(x)
x

. y(©Odt, (12)

d
P = k(e 0:0)0(0:0) 27— k(2,02 0) 502 (0) + 2

g1(x)

if g,(x) = a and g,(x) = b, where a and b are constants, then the Leibnitz rule for Eq.(11) reduces to

2(x)
ar_ lfg DD | ae (13)

PO == gt 0

The numerical computing technique has been as described in the following: The first step, we differentiate Eq.(1) with
regard to x by using the Leibnitz rule, then we obtain differential equations as shown below:

") =f'(x) + AF'(x)
y(iv)(x) — f”(x) +/1F”(x)

(14)
Y® @) = FB2(x) + AF®D (x)

and so on until F™ = 0,n = 3,4, ... with initial conditions y(0) = a,y'(0) = £,y"(0) = ¥,y (0) = §, ...y D(0) =
n.

In the second step, we suppose that
N

YOG = ) aihix), (15)

i=1
and using the Haar wavelets collocation approach.

The third step is to integrate Eq.(15) until we achieve the approximate solution, as shown below

N
YOI =8+ ) aiPyx) (16)
=)
N
YOI =y + 83+ ) apy(x) (17)
i=1
N
xz
y® D)= +yx+ 85+ z a;Ps;(x) (18)
i=1
2 43 R
y(x)=a+,8x+y—+5—+---+n—+2aiPni(x) (19)
2! 3! n! ’
i1

The final step is to replace Eq.(15)-Eq.(19) in Eq.(14), which reduces the nonlinear system of N equations with N
unknowns, and then employ Newton's technique to obtain the Haar coefficients a;, Where i = 1,2, ..., N. Eventually
replacing Haar coefficients in Eq.(19) to determine the suitable approximation solutions of Eq.(1).

16
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3. Numerical Experiments
This section illustrates the performance of a proposed method, through an implementation based on Matlab programming.

The pointwise error is used to measure the error between the numerical and analytical solutions. We denote by E errors
term described by

Egwm = y(x) = Yyyu. ().

Let us introduce the three accuracy indicators when using space step size h.
The pointwise error

enwm = |E(x))|

The [* norm of the error

1°(Eqwm, h) = On;izglEme (x|

The 12 norm of the error

N
lz(EHWM: h) = |h Z | Exwn (x:) |2
i=0

Example 3.1. Consider second order nonlinear Fredholm integro-differential equation

ax w: 1(F
7 i _ _ _ 2
y"(x) = —sinx 16 + 32 + 8.[0 (x — t)y?(t)dt (20)

with initial conditions y(0) = 1,y’(0) = 0, and exact solution y(x) = sinux.

Differentiating the Eq.(20) with respect to x, gives

"(x) = T +1fn 2(t)dt
vy (x) = —cosx 1680y .

we have the following differential equation by differentiating the above equation again according to x,
y@)(x) = sinx, (21)
with initial conditions y(0) = 0,y’(0) = 1,y"(0) = 0,y""(0) = —1.

Using the Haar wavelet approach, we suppose that

N

Y0 = ) ahi(x). (22)

i=1

The approximate solution can be illustrated below after integrating Eq.(22), and applying the initial conditions.

Y = =1+ ) P00 23)
y'(x)=—-x+ a;Py;(x) (24)
2,

17
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=15+ ak 0 25)
X N

=1
3
Y = x =54 ) aiPy(x). 26)

=1

The approximate solution of Eq.(20) is given by Eq.(26). Now by replacing Eq.(22) in the differential Eqg.(21), then reduce

the nonlinear system as follows
N

Z a;h;(x) = sinx, (27)

i=1

Newton's technique was employed to get the Haar coefficients a;, in Eq.(27). Finally, we substitute the values of Haar
coefficients a;, in Eq.(26), we get the approximate solution.

Table 1. Comparison between the exact solution and approximate solution of Example 3.1

x;(/32) y(x) Y pwm (x) Eqwm liwm Giwm

1 0.031245 0.031245 9.9321e-10

3 0.093613 0.093613 4.2708e-08

5 0.15561 0.15562 2.0353e-07

7 0.21701 0.21701 5.626e-07

9 0.27756 0.27756 1.1987e-06

11 0.33702 0.33702 2.19e-06

13 0.39517 0.39517 3.6141e-06

15 0.45177 0.45178 5.5476e-06

4.8174e-05 2.1289%e-04

17 0.50661 0.50662 8.0664e-06

19 0.55947 0.55948 1.1245e-05
21 0.61015 0.61017 1.5156e-05
23 0.65844 0.65846 1.9873e-05
25 0.70417 0.70419 2.5465e-05
27 0.74714 0.74717 3.2002e-05
29 0.7872 0.78724 3.955e-05
31 0.82418 0.82423 4.8174e-05

18
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Exact Sol.
o8kl @ HwM. Sol

X

Figure 1. Comparison between the exact solution and approximate solution of Example 3.1

Example 3.2. Consider second-order nonlinear Fredholm integro-differential equation

1

y"'(x) + xy'(x) — xy(x) = e* —sinx + J- sinx e 2ty?(t)dt
0

with initial conditions y(0) = 1,y’(0) = 1, an analytical solution is y(x) = e*.

Differentiating the Eq.(28) twice with respect to x, gives

1
Y +xy"(x)+y' (x) —xy'(x) —y(x) = e* — cosx + J cosx e 2ty?(t)dt

0
and
1

D) +xy"(x) + 2y"(x) —xy"(x) — 2y'(x) = e* + sinx — | sinxe 2y2(t)dt
y y y y y y

0
from Eq.(28), we have

1
—f sinx e”2y?2(t)dt = e* — sinx —y" (x) — xy'(x) + xy(x)
0

Replacing Eq.(30) into Eq.(31), we obtain

(28)

(29)

(30)

(3D

yP () + xy" (x) + 2y"(x) — xy" (x) — 2y'(x) = e* + sinx + e* — sinx — y"'(x) — xy'(x) + xy(x)

Y0 +xy" (x) + 3y" (%) — xy" (x) = 2y' (x) + xy'(x) — xy(x) = 2e*

By simplification the Eq.(32), we get the differential equation as the following form
Y0 +xy" () + B = 0)y"(x) = (2 = x)y'(x) — xy(x) = 2e*

with initial conditions

y(0)=1y'(0)=1,y"(0) =1,y"(0) = 1.

Using the Haar wavelet approach, we suppose that

19
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N

Y00 = ) aihi(0). (34)

i=1

The approximate solution can be found below after integrating Eq.(34), and applying the initial conditions.
N

y'x) =1+ Z a;Py(x) (35)
N

y'x)=1+x+ ) a;P,;(x) (36)

y'(x)=1+x+ % + Z a;Ps;(x) (37)

y(x)—1+x+—+—+ZaP4l(x) (38)

The approximate solution of Eq.(28) is given by Eq.(38). Now by replacing Eq.(34) in the differential Eq.(31), then reduce
the nonlinear system as the following form:

Zaihi(x)+x<ZaP2L(x)>+(3—x)<1+x+Zale(x)>—(2—x)<1+x+—+2a P3l(x)>

i=1 i=1 i=1 i=1

<1+x+—+—+ZaP4l(x)>—2e (39)

Newton's technique was employed to get the Haar coefficients a; in Eq.(39). Finally, we substitute the values of Haar
coefficients a; in Eq.(38), we get the approximate solution.

Table 2. Comparison between the exact solution and approximate solution of Example 3.2.

x;(/32) y(x) Y awm (%) EHWM lhwm Giwm
1 1.0317 1.0317 2.2892e-09
3 1.0983 1.0983 1.4976e-07
5 1.1691 1.1691 1.2346e-06
7 1.2445 1.2445 5.6305e-06
9 1.3248 1.3248 1.8454e-05
11 1.4102 1.4103 4.8817e-05
13 1.5012 1.5013 0.00011115
15 1.598 1.5982 0.00022661
17 1.7011 1.7015 0.00042447 0.0090 0.0275
19 1.8108 1.8115 0.00074366
21 1.9276 1.9288 0.0012342
23 2.0519 2.0538 0.0019586
25 2.1842 2.1872 0.0029936
27 2.3251 2.3295 0.0044314
29 2.475 2.4814 0.006381
31 2.6346 2.6436 0.0089698

20
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281

Exact Sol.
26F @ HWM.Sol

0 Oj2 0.I4 O‘.G 018 ‘II
X
Figure 2. Comparison between exact solution and approximate solution of Example 3. 2.

Example 3.3. Consider second-order nonlinear Fredholm integro-differential equation

1 1t

y"(x) =e* + Z(e2 —-2)x + Ef x(t —y?)(t)dt, (40)
0

with initial conditions y(0) = 1,y’(0) = 1, and exact solution y(x) = e*.

Differentiating the Eq.(40) with respect to x, gives
1 1t
y"(x) =e* + Z(e2 -2)+ Ef (t —y®)(t)at.
0

We have the following differential equation by differentiating the above equation again according to x,
y™(x) = e*, (41)

with initial conditions y(0) = 1,y'(0) = 1,y"(0) = 1,y""(0) = 1.

Using the Haar wavelets approach, we suppose that

N
Y@ = () (42)
i=1
The approximate solution can be found below after integrating Eq.(40), and applying the initial conditions.
N
Y =14 ) @by () (43)
i=1
N
y'(x)=1+x+ Z a;P,;(x) (44)
i=1
N
x2
yx)=1+x+ > + Z a;Ps;(x) (45)
i=1
X2 X3
yx)=1+x+ T Z a;Py;(x). (46)
T
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The approximate solution of Eq.(40) is given by Eq.(46). Applying Eq.(42) to the differential Eq.(41) reduces the
nonlinear system as follows:

N

z a;hi(x) —e* =0, 47

i=1

then Newton's technique employed to get the Haar coefficients a; in Eq.(47). Finally, we substitute the values of Haar
coefficients a; in Eq.(46), we obtain the approximate solution.

Table 3. Comparison between the exact solution and approximate solution of Example 3.3.

x;(/32) y(x) Y pwm (x) EqwMm Liwm iwm
1 1.0317 1.0317 1.0117e-09
3 1.0983 1.0983 4.351e-08
5 1.1691 1.1691 2.08576-07
7 1.2445 1.2445 5.8098¢-07
9 1.3248 1.3248 1.2484¢-06
11 1.4102 1.4102 2.30176-06
13 1.5012 1.5012 3.8349¢-06
15 1.598 1.598 5.9455¢-06
17 1.7011 1.7011 8.7349¢-06 5.6679¢-05 2:4240e-04
19 1.8108 1.8108 1.23086-05
21 1.927 1.9276 1.6775¢-05
23 2.0519 2.0519 2.225¢-05
25 21842 2.1842 2.88516-05
27 2.3251 2.3251 3.67026-05
29 2.475 2.4751 4.5933¢-05
31 2.6346 2.6347 5.6679¢-05
281

Exact Sol.
26 @ HWM.Sol.
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Figure 3. Comparison between the exact solution and approximate solution of Example 3.3.
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4. Conclusion

The numerical solution of nonlinear Fredholm integro-differential equations of the second order was obtained in this work
using the Haar wavelet collocation method based on the Leibnitz rule. To solve the resulting integral equations, the Haar
wavelet function and its operational matrix were also applied. The integro-differential equations are reduced to a set of
algebraic equations after being reduced to differential equations with initial conditions. The error analysis reveals that the
approximation becomes more accurate as the level of resolution N is raised. As a result, a bigger N is advised for better
results. In the future, this work can be solved by using finite element methods. For more details, see [17-24]. Another
interesting direction would be the using finite difference and compact finite difference methods, see [25-28].
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