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Do+ Py + W =0
¢y(X,a)—§0y(X,b)= 0

(P(X, y)‘y:aJrgsin Ky X B @(X, y)‘y:b+gsin kwx =0
w

w!

Abstract

In this paper we study the solvability conditions under which certain
partial differential equation with homogenous boundary conditions
containing small parameter has a solution by using perturbation
technique.

Here we deal with the following partial differential equation

Do+ Py +Wip=0
with boundary conditions
¢y (x,8)— ¢, (x,0)=0
and
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(D(X’ y)‘y:a+gsin kwx —¢(X, y)‘y:b+gsin kwx =0
where kW,W are constants and ¢ is small parameter.

According to this method, the solution of the problem is represented
by the first few terms of a perturbation expansion.

1. Introduction

Many of the problems faced to day by physicists, engineers and
applied mathematicians involve difficulties, such as nonlinear boundary
conditions at complex known or unknown boundaries can be solved by
approximation methods. One of them is perturbation method, according
to these techniques, the solution of the problem is represented by the first
few terms of a perturbation expansion [5], perturbation methods have
been used [2] for solving elliptic equations with small nonlinearity. In [4]
the author used the perturbation method which is given in [6] to find the
solvability conditions for certain eigenvalue problem of fourth order. In
[3] various perturbation problem are arise in the theory of lubrication.

Homotopy perturbation method is applied for solving fourth order
boundary value problems by [7].

In this study we give a generalization of the boundary conditions that
were given by [1]. Here we deal with the following partial differential
equation

Pyx T Py + WZ(D: 0 (1.1)
with boundary conditions

¢y (X,a)—goy(x,b):O (12)
PO,y ssinkge — PV ssinix =0 (1.3)

where kW,W are constants and ¢ is small parameter.

2. Solvability conditions for partial differential equations with
boundary conditions
The study is divided as the following steps:

I - Transfer the boundary conditions
Transfer the boundary conditions from
y=a+esink,x, y=b+esink, x to y=a ,y=b respectively

Let p=gy(x, V) +e@ (X, y)+€° 0, (X, Y) +...... (2.1)
We note that the boundary condition (1.3) is imposed at
y=a+e&sink, X, y=b+esink,x , and hence & appears in the

argument of ¢ as well as in the coefficients.

Since the usual procedure in perturbation methods is to equate
coefficients of equal powers of &, we will not be able to do that unless &
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Is removable from the argument. To do this, we transfer the boundary
conditions from
y=a+esink,x to y=a,y=b+esink,x to y=b
by a Taylor series expansion.
We write ¢(x,y) at y=a+esink,x, y=b+esink,x
and expanding in a Taylor series about y=a,y=b, we have

p(x,a+e sink, x) =p(x,a)+¢,(x,a) ¢ sink,, x+;!goyy(x,a)gzsin2 Ky X+ oo

@ (x,b+e sink, x) =p(x,b)+p, (x,b) & sink, x+;(pyy(x,b)gzsin2 Ky X+ oo

Substituting these Taylor series expansions into (1.3), we obtain

i 1 .
- p(x,b)—p, (x,b)esink, X= 2, Py (x,b)&?sin®k, X —...... (2.2)

Now substituting (2.1) into (1.1,1.2 and 2.2) and -equating
coefficients of like powers of &, we have

order &°

Poxx T Poyy T Wz(p0 =0 (2.3)
Poy (X,@)— @y (X,0)=0 (2.4)
@, (X,8)— @, (x,b)=0 (2.5)
order &*

Pryx t Pryy + Wz(Pl =0 (2.6)
oy (X,8)— @y, (x,0)=0 (2.7)
@, (X,2) — ¢y (X,0) ==y, (X,2) sink,, X+ ¢y, (X, b)sink,, x (2.8)

II - Applying method of separation of variables

Since the problem (2.3-2.5) is homogenous and with constant
coefficients, therefore can be solved by separation of variables as the
following

Let  y(x,y) = X(X)Y(y) (2.9)
X"Y +XY"+w?XY=0 (2.10)
Poy (X,2)—@q, (X,b)=0 = Y'(a)-Y'(b)=0 (2.11)
@, (x,a)— ¢, (x,b)=0 = Y(@)-Y(b)=0 (2.12)

Dividing (2.10) by XY and equating to the separation constants, we
can write
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_ X” YII
=—+w'=c ,c>0

X Y
or
X"+k*X=0 ,c=k? (2.13)
Y+ (W —k?)Y =0 (2.14)

Both equations (2.13, 2.14) have solution

X =exp (Fikx) (2.15)
Y =c¢,sinyw? —ky+c,cosvw® —ky ,(c,,c, arbitrary) (2.16)

Substituting (2.16) in (2.11, 2.12),and we find the determinant of the
coefficients and equating it to zero, we have

cosvw® —k*(b-a)=1 ,vw’—k*(b—a)=2nr,

2
K2 =w? —(zr‘—”j n=123..... 2.17)
b—a
and hence
. .2 2

@, = exp (ik_x) (c, sin (bii;)y+ C, cos(bi;;) y) (2.18)
Substituting (2.18) into (2.8), we have
?,(x,8) = @,(x,b) =5 exp i(k, +k,)) X+, exp(i(k, —k,))x (2.19)
where

&= (T )(eos g)a—cos%)bmsin@)a-s )

L 27y cog 2 AN y0y— sinP™ ya—sin@™F 2.2
8 =2~ (cos.— )a—cost —)b)~(s <b ~)a=sinC=")) (2.20)

To find the solution of (2.6,2.7 and 2.19) for ¢, we note that the

boundary conditions (2.19) is nonhomogenous, then the variables be
separated as follows

o =g (y)exp(i(k, +k,)) x+d,(y)exp (i(k, —k,)) x (2.21)
Put (2 21) in (2.6, 2.7 and 2.19), we have

(B (y) + ot (¥)) exp(ik, +k,,)) X+ (85 (y) + a5, (y)) exp(i(k, —k,,))x =0

where

af =W = (ky +k, )2 ad =W - (k, —k, ) (2.22)
(¢i(a) — /(b)) exp (i(k, + k) x+ (¢, (a) — ¢ (b)) exp (i(k, —k,)) x=0

¢ (@) exp(i(k, +k,)) x+ 4, (@) exp(i(k, —k,)) x— ¢ (b) exp(i(k,,+k,))x -
_¢2 (b) exp(i(kn - kw))x = 51 exp(i(kn + kw))x + 52 exp(i(kn - kw))x
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Equating the coefficients of each of exponentials on both sides, we
obtain

T(y)+ai 41(y) =0 ,4/(a) - ¢i(b)=0,4(a) - h(b) = 5, (2.23)
7 (¥)+a65(y) =0,¢5(2) — 4;(0) = 0,¢,(3) - 4,(0) = 5, (2.24)

The general solution of (2.23) is

¢, = A cosay+ A, sina,y, and substituting in boundary conditions we

have

A (—a sinaja+ o singb) + A, (e, coseya—a coseb)=0

A (cosaa—cosagb) + A, (sinaga—sinyb) =5,

hence

4 = 0,(cosaya—cosayb) cosay + o, (sinaa—sin ayb)
2(1-cosa, (b—a)) 2(1-cose, (b—-a))

sina,y

Similarly the solution of (2.24) is
_ 0,(cosa,a—cosa,b) 0,(sina,a—sina,b) .

= COoSs + SIn
%= a—cosa,b-a) %Y T - cosa,ba) "2

Therefore from (2.21), we have
_,0(cosa,a—cosayh)
= 2(1-cosa_(b—a))
0, (sina;a —sin a;b)
2(1—cosa, (b—a))
N (52 (cosa,a —cosa,b)
2(1-cosa,(b—-a))
0,(sina,a —sina,b)
2(1-cosa,(b—a))
Substituting (2.18, 2.25) into (2.1), we obtain
0, (cosa,a —cosa;,b)

cosa,y +

sina, y)exp(i(k, +k,))X +

cosa, y +

sina, y)exp(i(k, —k,)) X (2.25)

o= exp(ikx)(sinbzﬂ y +c0s 27 y) + ((
—a

cosa, Y +
b-a 2(1-cosa, (b —a))
6, (sineya —sinayb) sina, y)exp(i(k, +k,))x+
2(1—cose, (b —a))
8, (Cosa,a—cosab) v+
2(1-cosa, (b —a)) i
0, (SiNa;a ~sinazb) o a,Y) expli(k, =Ky ))X) + ..o (2.26)

2(1—-cosa,(b—a))

If either cose (b—a)=1 or cosa,(b—a)=1, the second term
tends to infinity, and therefore the series (2.26) is nonuniform.
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Since cosa, (b—a)=1 = a, = t2)m7z m=012,....
W2 - (kn + kw)2 ~ (sz)Z or W2 - (kn o kw)2 ~ (Zmﬂ.)2 (227)
b-a b—a
But w?— (tz)m”)2 =k from (2.17), hence (2.27) can be written as

(k,+k,) =kZ or (k,—k,)>~k: or k,=7Fk,Fk,
To determine an expansion valid when k,6 =k, —k
parameter o as k,=k,-k, +¢co

let the

m !

III - Using method of multiple scales
Using the method of multiple scales in [5] and seek the expansion in
the form

(%, Y, ) = (X, X1, Y, €)= 0y (%o, X0, Y) + €1 (X0, X0, Y) o (2.28)
where x,=x and x =&x, thus

o 0 0

—=—+&—+......

OX 0%,  OX (2.29)
62 62 62

72:72"‘28

OX~  OX§ OX0X,
Substituting (2.28, 2.29) in (1.1,1.2 and 2.2) and equating

coefficients of likes power of &, we obtain

order £°

Poxoxo t Poyy + Wi, =0

¢0y(XO’ Xl’a)_§00y(xo’ x,b) =0 (2.30)
@0 (Xo, %, 8) — @y (Xg, X, 0) =0

order &

Pixoxg T Pryy + WO = =200, (2.31)
¢71y(xo’ Xl’a)_¢1y(X01 X,,0) =0 (2.32)

@ (%, %, 8) —@ (%, %, 0) =g, , (%5, X ) SNk X+, (%, X, D) SNk X, (2.33)

The solution of (2.30) can be obtained by separating variables,
however instead of making ¢, contain only one mode, we make @,
contain the two modes, the mth and nth mode and hence can be written as

2N . 2N )
- Ll Ll k
7o = A(%) (cos oy +sin 0y) exp (ikxo) +

+ A, (x) (cossrm;y+sint2)m7;y) exp (ik,X,) (2.34)
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where k., k. are defined by (2.17) and A, A, will be determined.

n' 'm

Substituting (2.34) into (2.31, 2.33), we have

O’p, e : 2nz . 20z :

+ + W@, =—-2ik A’ (X)(cos——y +sin——y)exp(ik . x ) —

axg ayz 2] nAn( 1)( b—ay b—ay) p( n O)
. 2mrr . 2mrx )

—2ik A’ (x,)(cos——y +sin——vy)exp(ik .x 2.35
nAn (%) (005 -y +sin - y)exp(ikx, ) (2:35)

@1 (X0, X1, @) — 1 (X, %, ) =—A, (xl)(si;;)(—sin mera +

2N . ) 2mrr . 2mx
cos——a)sin(k x.)exp(ik x,) — X ) (——)(-sin——a
+ b—a ) ( W 0) p( n 0) An( 1)(b_a)( b +

+coszrnzla)sin(kwxo)exp(ikmxoh Ah(xl)(snz)(—sinsmrb +

2N ) ) 2mrr . 2mrx
cos——Dh)sin(k, x,)exp(ik.x X )(——)(—sin——hb
+ b—a ) ( w 0) p( n 0)+An( 1)(b_a)( b—a +

+c0s 2™ b)sin(k, x, ) exp(ik. x;)
b-a
@1 (Xg, X, 8) =1 (Xg, %, 0) = 61, A, exp (i(k, +k,)) X, +
+830 A, XD (i (K, ~K,) X +
£8, A exp(ilk, + k)Xo + 8, A exp(i(k, —k, )X, (2.36)

Im’"*m

where 51n o) ,, are defined by (2.20) and O11 Op are also defined by

(2.20) if n isreplaced by m.
To determine the solvability conditions for the first problem,

substitute k, =k,—k.,+&o into (2.36), we have
@1 (X0, X1, 8) — @1 (X, X1, D) = 61, A, exp(i (2K, — Ky, + £0)) X | +

+ 8,0 A, eXp(i(ky, —e0a)) X + 0y, Ay exp(i(k, +e0)) X, +

+ Oom A eXP(1(2K,, —k, —€0)) X
=01, Ay exp(io x ) exp(i(2k =K )) X, + 0y, A, exp(—io x ) exp(ik, X, ) +
+ O Ay €XP(iK, X ) eXP(i 0 X)) + Oy Ay eXP(—ia X ) exp(i(2k =k, )) X,

(2.37)

where x, = ¢ X,

We note that the terms exp(ik,x,)and exp(ik,x,) in (2.35) and

(2.37) may lead to incompatibilities and solvability conditions must be
imposed on them. These solvability conditions can be obtained by
seeking a particular solution corresponding to these terms in the form
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P =, (X0, Y) exP(iK, X0 ) + iy (%1, y) exp(ik;, Xo) (2.38)

Substituting (2.38) into (2.32, 2.35 and 2.37) and equating the
coefficients of exp(ik,x,)and exp(ik,x,) on both sides, we have

8 ¢” (Zn—”) ¢, = —2ik Aq(cosby+smbz_y) )
¢ny (X11a)_¢ny (Xlib):O s (239)

¢, (X, @) — @, (%, 0)= 0, A, explio x,)

J

G N o 2ma

Y ( ) @, =—2iK An(cosb y+smb_ y)

¢my (X1’ a) - ¢my (Xli b): 0 s (240)
G (X%, @) — @, (X, 0) =5, A, exp(-io X;) 7

Thus, determining the solvability conditions ¢ has been
transformed into determining the solvability conditions for @, and ¢,,.

We note that the equation in (2.39) is self - adjoint, the solution of
the adjoint problem can be taken as

u= cos2L y+sm2Ly
b—a b—a

Multiplying the equation in (2.39) by u (y) and integrating the result

by parts from y=a to y=»b to transfer the derivatives from ¢, to u,

we obtain

5 8%, . 2nr, ¢ onz 2nrz

u n o dy = | (= 2ik. A’ (cos—=y +sin—=y)?)d
I (ot hog) !( WAL (COS =y +sin ——y)*)dy

j( MY gy + (;’;"u

b
4u| =-2ik A (b-a) (2.41)

a

To find the boundary conditions for adjoint problem, put the right
side in (2.41) equal to zero and using the homogenous boundary
conditions in (2.39), we obtain

5¢§y<b) (u(b) ~u(@)) — ¢, (b)(u'(b) ~u'(a)) =0

Equating the coefficients of Mand ¢ (b) Dy zero, we have
ay n

u(b)=u(a) ,u'(b)=u'(a) (2.42)
which are the boundary conditions for adjoint problem.
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Now from (2.41) and using the nonhomogenous conditions in (2.39)
and boundary conditions (2.42), we obtain

~ ¢, (OU'(X) |2 = -2k, A, (b - a)
— (¢, (0)U'(b)- 4, () u'(a)) = -2k, A, (b—a)

or

) . 2N« 2nr . 2Nx )
0, exp(io X )(-=sin——b+cos——h)——=-2ik A'(b—a
inAn €XP(i ) (i " bo+cos " b) T =2k, A (b -a)
therefore

. 2nr . 2nz . 2nm, ikt
' = (5, A exp(io X )(cos——b —sin b n (2.43)
A, = (O Ay eXp(io X )( b_a b_a )b—a 2(b-a)
and this is the solvability condition for problem (2.39).
Similarly if m =0, the solvability condition for problem (2.40)

_ 2mz, . 2mz, . 2mz, ik’
5 A el Yeos 2T 20T . (2.44)
An = (A, expliox)( b—_a b-a )b—a 2(b-a)

Ifwelet A =a,exp(iyX), A, =a,exp(iy,X) (2.45)
where a_ ,a.,y; andy, are constants, then it follows from (2.43) and
(2.44)

) 2nr .
iv,a =(0,a, (cos——b-sin b
7/1 n (1m m( b—a b—a )b—a)Z(b—a)

_ 2mrz . 2mrz, 2mz, ikt
iy,a. =(5,a,(cos——b-sin b 3 (247)
V2Ym ( 2n n( b—a b—a )b—a)Z(b—a)

V=), —O (2.48)

Eliminating y, and a,,from (2.46) by using (2.48), we have

71(r1 — ) = (6102, (COSEnﬂb —sin ZHJb)(COSZran —sin ZmJb)
a

b-a b-a b-a
2nz . 2mz,, k' k!
(b - a)(b - a)(2(b —a) X 2(b—-a)

)

or
2 2nr . 2nrw 2mrr . 2mrx
— —(6,..0,.(C0OS——b —sin——b)(cos——b —-sin——b
71— 01— (010 ( b_a b_a )( b_a b_a )
2n7z.,2m k1k?t
(YD) () =0

b—a'b-a 4(b-a)’
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1 _1,, 2nr . 2N« 2mr . 2mrx
=—ocF= +0,.0, (C0S——b —sin——b)(cos——b —-sin——b
71 2(7 2(5 m Zn( b_a b_a ) b_a b_a )

onz . 2mr. kkt 2

D)2

When substitute the value of y, into (2.45), we find the values of
A, , A, and then substitute in (2.43), (2.44), we obtain the solvability
conditions of the problems (2.39), (2.40).

3. Conclusions
The perturbation method has been applied to find solvability
conditions of the 2" order boundary value problem (1.1-1.3) which are

_ nr . 2nz . 2nm, ik*
"= (5. A exp(io % )(cos———b—sin b .
Ar = (Gin Ay eXpliox,)(c0s 2 b—sin o b)) St

_ 2mr . 2mz, 2mz, ik
"= (5, A exp(io X )(Cos b —sin b s
An = (0 Ay explio)(cos, = b=sing 7o), 7o) o ay

These conditions were satisfied.
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