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Abstract

Several scientific and engineering applications are usually described as integral equations. A new
approach for solving the type of linear and nonlinear Fredholm integral equation of the second kind is
proposed. Although many methods provide an analytic solution, there are different types of integral
equations are difficult to solve. Therefore, the numerical approach for solving integral equations is used.
Fredholm integral equations of the second kind have been converted to unconstrained optimization
problems to find their approximate solutions. This work employs particle swarm optimization combined
with padé expansion to find an approximate solution of the Fredholm integral equation. This is applied by
minimizing the fitness function value. The fitness function is calculated using the discrete least squares
weighted function. The proposed algorithm is applied to solve linear and non-linear FIE. The results are
compared to exact solutions. The stability of the proposed algorithm is also presented. The results are
promising in terms of convergence , stability and accuracy of the approximate solution.

Keywords: Fredholm integral equations, particle swarm optimization, padé approximation
Slapl) Gy dglia) aladinly g ooy ol 8 o e VL Alalsil) algaa s dalas Ja

20l ud gy Gl 3 al 3o T A dana aun ) £ el

Gl o sl (o sall Aadln ol o hall Ay il A0S ctipialy S 12

: paliiaal)

FlalSall Jlganp Alslae Jal 2on g o) 5 s ALl Y olee JSE e datiglly palall ikl (e dp3all Chamg i

lia o V) ¢Glias dlalsal) Al dalaa dal GEHLI Ge 2aal) 39a e sl o JBI sl Ga didadll yally Al
& Alelal) Aslaad) Jad Zpaaad) gkl aladia) 3 I Ll Ma slagd anall o 0 5 ZLlSE Y slad) e Adlie gl
Al 5 il 138 8 gl A sl o Jsemnll saa e Al ilees ) S g5l o LIS Jlgan b N oles (Jisad
AL Al Al s (3yke e @l Bk L ALalS) algand Abaleal j® da Y (b moms e Slaseen]) e Ll
ALalSal) WJgas Alabee Jad A i) dua) lsall (Bubsi 5 L dakaiiall (graeall Cilaspall o Al plasiols L Ay Qs 3

81


mailto:israa.21esp31@student.uomosul.edu.iq
mailto:2azzam.aladool@uomosul.edu.iq
http://creativecommons.org/licenses/by/4.0/

Journal of Education and Science (ISSN 1812-125X), Vol: 32, No: 01, 2023 (81-90)

B 7o Audall o3a oyl LA gial) Aaei el il e Liad o LeS L3580 Jolally ilal) Ajlie 2 . Aladl) g dudad)

Ay oyl inly (ol dad) ColE Cus
@b s ¢ Glaseal) Cye il ¢ dlalal) Al Y alea 1dalizel) cilall)

1.INTRODUCTION

Equations with an unknown function that have the integral sign are known as integral equations [1].
The literature on integral equations and their applications is extensive since integral equations are one of
the key instruments in many fields of applied mathematics, physics, and engineering [2]. Additionally,
these equations can be reformulated from other mathematical issues such as ordinary differential equations
and partial differential equations, As a result understanding integral equations and how to solve them is
extremely useful in applications [3].

It is increasingly common for engineers and mathematicians to use numerical simulations to model
phenomena, especially when analytical solutions are unavailable[4]. One of the oldest problems in applied
mathematics is to find numerical solutions to Fredholm integral equations of the second kind[5]. There
are many methods to solve Fredholm integral equations of the second kind including[6] homotopy
perturbation method(HPM)[7]. Modified Neumann series[8]. Adomian Decomposition method[9]. Taylor
series method[1], Monte Carlo method[10].Space kernel approximation methods [11].Quadrature
method[12]. g-homotopy analysis method[5]. Numerical solutions of integral equations are often
complicated and require extensive arithmetic Operations[13].

Recently, researchers are interested to solve some mathematical problems by using intelligence
algorithms such as Genetic Algorithm(GA), Neural Networks (NN), particle swarm optimization
(PSO)[14]. [15]. Optimizing refers to the process of determining the most optimal solution for a given
problem [16]. It appears that converting some mathematical problems into optimization problems offered
interesting results for finding approximate solutions to some problems[17]. Algorithms that use intelligent
processes have been successfully applied in solving ordinary differential equations[18] , systems of
ordinary differential equations[19].

Many optimization techniques are improved to solve mathematical problems iteratively based on a
given measurement of quality [20]. Ordinary differential equations (ODESs) and systems of ordinary
differential equations(SODEsS) are solved by applying intelligent algorithms based on function expansions
[14]. Evolution Strategies and even expansions of the Fourier series are utilized to solve initial and
boundary value problems [21]. A particle Swarms Optimization(PSO) based on the Fourier series is used
to solve nonlinear ordinary differential equations and integral equations [14]. Accurate results are
obtained by converting ordinary differential equations into constrained optimization problems [22]. In
this study Fredholm integral equation of the second kind (FIE) is solved using Padé expansion. it is
possible to use [-1,1] as a search space by Padé expansion which is fraction expansion. To obtain a highly
accurate Padé approximation, a small number of variables is typically required[19]. This paper aims to
demonstrate that particle swarm optimization(PSO) algorithm can also be adapted to find an approximate
solution of the Fredholm integral equation of the second kind based on the Padé expansion.

In this work, different examples of linear and nonlinear Fredholm integral equations are discussed.
After this introduction work principles are presented in the next section, followed by the methodology for
solving ODEs. The examples are then presented along with the settings, and the results are shown. Then
conclusions are drawn.

2.PRELIMINARY
In this section, an explanation of the Fredholm integral equation of the second kind is
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presented. The fundamentals of particle swarm optimization algorithms are also discussed.
Afterward, the PSO algorithm is described.

2.1Fredholm integral equations of the second kind(FIEs)
The Fredholm integral equations (FIES) of the second kind are considered:

b
u(x) = f(x) + Af k(x,t,u(t))dt a<x<b (1)
a
Where 2 € R, k is the kernel , f is the known function and u is the unknown function [12].

2.2Particle swarm optimization
Kennedy and Eberhart presented particle swarm optimization (PSO) in 1995[23]. A particle
swarm optimization (PSO) algorithm is a population-based stochastic optimization algorithm
inspired by the collective behavior of animals such as birds and fish [24]. There is a velocity
and a position for each member of the swarm (called particle), particles adjust their positions
in the search space based on time by two equations as in the references [23][25].

§;(t +1) = w X 8§;(t) + ¢y X rand; x (0;(t) — y;(t)) + ¢, X rand, x (A(t) —y;(®))  (2)

yit+1) =y;(t) +6:(t + 1) ©)

In this case, y; represents the position of the i**particle, and §; represents its velocity.
There is a previous best particle referred to as o;(t) and a global best particle referred to
as A(t), within the interval [0,1],randl and rand2 represent random vectors, w represents
inertia, it is important to note that c¢;and ¢, are positive constants, referred to as
“acceleration  coefficients”, each velocity vector is clamped within the range
[varmax ,varmin] decrease the probability that a particle leaves search space, and t =
1,2,3....Maxit , represents the number of iterations, and (Maxit) is the max iteration. The
number of populations in a swarm is called nPop .

A particle swarm optimization (PSO) algorithm can search in N dimensions depending

on the number of variables nVar , the values of ¢c;and ¢, and w are determined as

follows:[22]
2k .
X = [2—9-V92-49)| if 9>4 (4)
k ifo<4
and
9=01+0,, c; =01 Xxy ,c;=U, %Xy w=y )

Then k € [0,1], and the values 9, , 9, are chosen randomly to achieve 9 > 4.
Using the following parameter ¢, the non-converging behavior of PSO can be avoided by
continuously damping the velocity in each iteration.

w(t+1)=¢ xw(t) (6)

We can obtain the velocity space by following these steps:
Max Velocity = a X (VarMax — VarMin),

Min Velocity = —Max Velocit y @)

and « is a positive parameter.
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2.3Algorithms of PSO
PSO consists the following steps:[26][27]
i) Parameters and inputs are initialized, 9,,9,,k ,¢ ,a ,VarMax ,VarMin ,nVar
, Maxit and nPop
ii) Let the initial velocity is equal to zero.
i) Initializing an arbitrary particles’ position in the search space.
Iv) The fitness function of the swarm particles is evaluated
v) Find the global optimal position (gbest)of the particle swarm, and the particles’ optimal position
(pbest;),wherei = 1,2,...N.
vi) The position and velocity of particles are updated according to Eqg. (2) and Eq. (3).
vii) Go to step (iv) if the number of iterations is less than Maxit.

3.METHODOLOGY
An approach for finding the approximate solution of FIE is presented. This
work starts by defining the expansion function. FIE is also converted into unconstrained
optimization problems. In addition, the fitness function and the discrete least squares
weighted function. Lastly, the algorithm for obtaining an approximate FIE solution is
presented.
3.1.The Padé expansion approximation
A systematic method for determining the optimal Padé Degree for a given problem that may
be not studied [28]. Consider the following expression of Padé expansion to approximate the
solution of FIE:[29].
N f(x) Yoo Dmx™
u(x) = Uapprx(x) = 9(x) = Z;io gx™ 8)
Where x € I = [xg,x,] , ny +n, =nVar and p,,, q, are real coefficients which belong to
the search space[VarMin,Var Max] , Ugppre(x) ,u(x) are the approximate solution and the
exact solution respectively, g(x) # 0V x € I.
3.2.Convert FIE into an unconstrained optimization problem
To convert Fredholm integral equations of the second kind into an unconstrained optimization
problems, suppose that U(x) is an approximate solution to (FIE)and is substituted for Eq(9)
yields:

Er(x) = [u() — F0) — 2 [ k(x, t,u(t))dtl (9)
An optimal solution to the FIE can be obtained when E,(x) near to zero. It is necessary to use
a quantitative criterion that determines the accuracy of the approximate solution to reduce
Er(x). This can be minimized using a discrete least squares weighted function[19].
3.2.1.The Discrete Least Squares Weighted Function (DLSWF)
To compute the discrete least squares weighted function, the following steps are
followed:[19][22]
Taking the interval Iand dividing it into N points {x, = a,xy, x5, %3,....,x, = b} , where
Xy =X+ hk ,Vk=0,123,...nand h > 0, and

N
DLSWF = /Z’“*ET(""”Z (10)

3.3.FIE -PSO Algorithm
Here is an outline of the proposed algorithm for solving FIE:
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Step(1): Create an array of Padé expansion coefficients nVar as follows:
[Po D1y ees Py G0 Q1 s e oo iy |-
Step(2): Convert the FIE into the implicit form as in Eq(9).
Step(3): The fitness function is determined as follows:
FITFUN = DLSWF (11)
Step(4): To determine Padé coefficients, PSO parameters are initialized.
Step(5): A PSO algorithm should be applied to minimize fitness.
Step(6): Do step(5) until FITFUN < TOL or the maximum number of iterations is reached.
An evaluation of the algorithm is performed by calculating the Mean Absolute Error (MAE) using the
approximate solution Uy, (x) and exact solution u:

2g=1|u(xk) - Uapp (xk) |
N

MAE = (12)

4 NUMERICAL RESULTS:
A PSO algorithm combined with a Padé approximant is presented in this section to approximate
the solution of FIE. Additionally, the algorithm's convergence and stability are explained.

4.1.Numerical Examples
In this paper , linear and non- linear (FIE) are included in TABLE1:[11] [30][31][5] [32]:

TABLE 1: Shows different examples of FIE, with their exact solutions.LFIE and NLFIE are denoted linear
and non-linear Fredholm integral equations of the second kind respectively.

Examples FIE Exact Solutions
LFIE1 u(x) = —%cos(x) + %fg cos(x — t) u(t)dt u(x) = sin x
LFIE2 u(x) = gx —x+xtan"lx — f_ll xu(t)dt u(x) = xtan lx
LFIE3 u(x) = —% + sec?x + %fozu(t)dt u(x) = sec?x

3
NLFIE 4 u(x) = e* — @ + fol xtu3(t)dt u(x) = e*
NLFIES u(x) = gx + %fol xtu?(t)dt u(x) =x

NLFIE6 u(x) =1+x+ (1 - gln(S) + gn> x? + fol 2x? tin(u(t))dt u(x) =x*+x+1

4.2.Setup of the program

TABLE?2 shows examples of parameter values. After running the algorithm ten times, its reliability is
verified. To implement the algorithm, Matlab R2020a software is used, There is a type of computer
Lenovo laptop, Intel (R) Core(TM) i5-7200U CPU @ 2.50GHz 2.71 GHz with RAM 4.00 GB,
Windows 10 Pro and system type 64-bit.
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TABLE?2: The following parameters are used in all examples:
Y, 9, k |e a h TOL | Maxit
205 1205 |1 08 |04 |0.01|1e-10 | 300

Parameter
Value

npop
300

4.3.FIE Solutions

As a result of the PSO algorithm, the coefficients for approximate solutions of FIE for all examples are
listed in TABLE 3. For example, the best approximated solution to equation ( 13) can be found by
LFIE1 (u) is shown, where nVar = 20, and x € [0,1] as follows:

0.000561 + x + x2 —0.13998 x3+ 0.923627 x*—0.36192x°—x°+ 0.828749x7 —0.1865x8+x°

ux) = 1+ x+0.257652x2 +0.218963 x3+0.098654 x*+0.112121x5+0.343289x6—0.49893x7+0.109897x8 +x° (13)
TABLE 3: Displays variables based on their values using by FIE - PSO algorithm.
The number of variables, nVar = 20, [Var max, Var min] = [1,—1].
Examples
coff.| LFIE1 LFIE2 LFIE3 NLFIE4 | NLFIES NLFIE6
Pm 0.000561 | -0.00166 | -0.99964 | 0.234767 | 0.000115 | 0.594451
m=0| g 1 -0.99994 -1 0.23349 | 0.816768 | 0.595102
DPm 1 0.012421 | -0.35876 | 0.404484 | 0.8083 0.762303
m=1]| q, 1 -0.78956 | -0.29384 | 0.16751 | 0.609462 | 0.153907
Pm 1 -0.94264 -1 0.213982 | 0.686411 | 0.999954
m=2| qn, 0.257652 | -0.16965 | -0.55942 | 0.093998 | 0.99996 0.245754
Pm -0.13998 | -0.96643 | -0.95151 | 0.756128 | 0.764937 0.13353
m=3| qnm 0.218963 | -0.38035 | 0.999977 | 0.12931 | 0.253347 | 0.000274
Pm 0.923627 | -0.16219 | 0.121869 | 0.532422 | 0.501501 1
m =4 m 0.098654 | -0.35364 | -0.76838 | 0.330257 1 0.380442
Pm -0.36192 | 0.535447 | -0.38403 | 0.373091 1 0.80171
m=5| g 0.098654 1 0.281965 | 0.163921 | 0.977373 | 0.016396
Pm -1 0.138245 | -0.99335 | 0.106877 | 0.999994 | 0.233356
m=6| q. 0.343289 | -0.65668 | -0.66001 | 0.097573 | 0.966248 | 0.454073
Pm 0.828749 | 0.255614 | -0.99796 | 0.344359 | 0.704551 | 0.679155
m=71 q, -0.49893 | 0.373171 | -0.84193 | 0.134048 | 0.836949 | 0.473395
Pm -0.1865 | -0.92336 | 0.01119 | 0.360563 | 0.768608 | 0.999999
m=8| q. 0.109897 | -0.22828 | 0.898963 | 0.032124 | 0.491111 0
Pm 1 -0.04433 | -0.67931 | 0.743734 | 0.952863 | 0.972592
=91 g, 1 -0.46648 | 0.171335 | 0.112907 | 0.2361 0.07274
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Figure 1: Exact and approximate solutions are compared

The exact solutions to several examples are shown in Figure 1. Within the defined domain, the
approximate solutions in Figure 1 were consistent with the exact solution. Hence, the FIE -PSO

algorithm can solve linear and non-linear FIE.
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The algorithm may reach the exact solution. However, the approach frequently leaves an error rate
derived from the approximation. The value of TOL and calculated by considering the value of Mean
Absolute Error (MAE) shown in TABLE 4.

TABLE 4: Indicates the Mean Absolute Error between the approximate and exact solutions

Examples MAE
LFIE1 9.43E-04
LFIE2 1.83E-03
LFIE3 6.60E-04

NLFIE4 0.00418301
NLFIE5 6.00E-05
NLFIE6 6.68E-04

As a result of this method, convergence occurs rapidly. FIGURE 2 shows the convergence of the FIE-
PSO algorithm over 300 iterations for all examples, acceptable solutions are obtained with less than 100
iterations and are stable to 300 iterations (see FIGURE 2). Display the convergence of the algorithm

0.12 .
e | FIE 1
A e LFIE2 | |
01 LFIE3
s NFIE4
0.08 e NFIE5 | -
‘g NFIE6
© 0.06
w
g |
m
0.04
0.02
O L\ S
0 0 100 150 200 250 300

lteration
Figure 2: Display the convergence of the algorithm

5.CONCLUSIONS

The particle swarm algorithm is practical for solving Fredholm integral
equations of the second kind. FIE has been converted into an unconstrained optimization
problem by using approximate expansions. POS algorithm was used with fitness function to
find an approximate solution to linear and non-linear Fredholm integral equations of the
second kind. To describe approximate solutions, the proposed algorithm wused the fractions
expansion as an approximation based on the Padé approximation. By the use of the proposed
FIE-PSO algorithm, approximate solutions are found using Padé approximants. Based on the
results, the algorithm successfully solves linear and non-linear Fredholm integral equations of
the second kind. There are many advantages to using this approach, including accurate
convergence, stability, and accuracy. As a result, this method is recommended for solving
Volterra integral equations.
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