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A Modified Conjugate Gradient Method using
multi-step in Unconstrained Optimization
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Abstract:

In this paper we proposed a new HS type conjugate gradient method by
using two kind of modification, first derived a new non-quadratic model second
using structure of the memoryless BFGS quasi-Newton method. The new proposed
method always generates a descent condition. We give a sufficient condition for
the global converges of the proposed general method. Finally, some numerical
results are also reported.
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1. Introduction
We are concerned with the following unconstrained minimization
problem:
minimize f(x) (1)

where f:R" —>Ris smooth and its gradient g(x)=Vf(x) is available. There are
several kinds of numerical methods for solving (1), which include the steepest
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descent methods, the Newton method and quasi-Newton methods, for example.
Among them the conjugate gradient method i1s one choice for solving large-scale
problems, because it does not need any matrices. Conjugate gradient methods are
iterative methods of the form

X =X+ A dy (2)
— - gk+1 fOI’ k = O
Ao = {— g +PB.d, fork >1 )

where g, =g(x,) denotes Vf(x,) ,B, is a positive scalar and o, is a positive

scalar which is determined by a line search step satisfying the sufficient descent
condition:

ggn dy, < _CHgk+1 Hz 4)

where || stands for Euclidean norm.
The HS, FR, PR and LS are four well-known conjugate gradient methods, they are
specified by:

T
ES — ng*A(Hestenes and Stiefel, 1952), (5)
k Yk
2
R = Hgk”ﬂ (Fletcher and Reeves, 1964), (6)
Hng
T
PR — By ook 1969) )
Hng
T
ts - gk+#(Liu and Story, 1991), ()
—d, g,

where y, =g, —&-
Note that these formulas for 3, are equivalent for each other if the objective

function is strictly convex quadratic function and A, is exact line search. There are

many researches on convergence properties of these methods see for example
(Hager and Zhang, 2006) and (Nocedal and Wright, 2006).

To establish the convergence results methods mentioned above, it is usually
required that the step o, should satisfy the following strong Wolfe conditions

£(x, +o,d,)—f(x,) < a,g/d, ©)
g(x, + o dy)'dy|<—o gid, (10)
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where 0<38 <o <1. On the other hand, many numerical methods (e.g. the steepest
descent method and quasi-Newton methods) for unconstrained optimization are
proved to be convergent under the Wolfe conditions:

f(x, +akdk)_f(xk)sgakggdk (11)
g(x, +o,d)'d, >0 gd, (12)
see (Wolfe,1969) and (Zoutendijk,1970).

Also the conjugate gradient methods always satisfy the sufficient descent condition

gzldkﬂ < _Cngk+1 2 (13)
where c is a positive constant.

In this paper, we propose a new HS type conjugate gradient method by using
structure memoryless BFGS quasi-Newton method (Nocedal,1980) and (Shanno,
1978). The present paper is organized as follows. In section 2 we derived a new
non-quadratic model and use it in new multi-step of algorithm. In section 3 we
define the memoryless BFGS quasi-Newton method. In section 4 we propose a
specific new conjugate gradient method based on the new non-quadratic model and
new multi-step quasi-Newton method and prove its global converges. Finally in
section 5, some numerical experiments are presented.

2- The Non-Quadratic Models.

Most of the currently used optimization methods use a local quadratic
representation of the objective function, but the use of the quadratic model may be
inadequate to incorporate all the information (Fried, 1999) so that more general
models than quadratic are proposed as a basic for CG algorithms, also (Al-Bayati,
1993) and (Tassopoulos and Story, 1984) have proposed further modifications of
the conjugate gradient method whichs are based on some non-quadratic models. If
q(x)is a quadratic function defined by:

q(x)=%xTGx +b'x+c (14)

where G is nxn symmetric and positive definite matrix and b is a constant vector

in R"and c is a constant. Then we say that f is defined as a nonlinear scaling of
q(x)if the following conditions hold (Boland et al., 1979):

dF
f(x) =F(q(x)), q>0 andd—zF >0
q
The following proportions are immediately derived from the above conditions:
1- Every contour line of q(x)is a contour line of f .
2- If X is minimize of q(x)then it’s also a minimize of f .
In this area there are various published works.
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(a) A CG methods which minimize the function:
f(x) =(q(x))’, p>0, xeR", in at most n-step have been described by
(Fried, 1991).

(b) The special polynomial case:

1
F(q(x)) =€, q(x) +E €, q°(x), where €,€, scalars, has been investigated

by (Boland et al., 1979).
(c) A rational model has been developed by (Tassopoulos and Story, 1984)

+1
where: F(q(x)) = ﬂ,
€, q(x)
(d) Another rational model was considered by (Al-Bayati, 1993) where:

Flqe) =—9%)  c S0 e 0.
1- <, q(X)
2.1 An Extended CG method
We consider a new non-quadratic model defined by:

F(q(x)) = ed® w2a00+! (15)

df .. .
Assume that q > 0 andd— > 0, the unknown quantities p, were expressed in term
q
of available quantities of the algorithm (i.e. function and gradient value of the
objective function) using the expression for p,

€>0, €,>0.

_E
P, = F (16)
From the relations
g, =F, Glx,,-x) (17)
g, =F G(x, —x’) (18)

Where G is the Hessian matrix, we have
T *
_ F1: _ gk(Xk+1 —X )

P, =7, T ;
' Fk+1 gk+l(Xk —X )
furthermore
gz(xkn _X*): gz(xk +7\“kdk _X*): g:(xk _X*)+7\‘kgzdk
and

gzﬂ (Xk B X* ) = gzﬂ (Xk+l B xkdk B X* ) = gzﬂ (Xk+l B X*)
since g, ,,d, = 0. Therefore, we express p, as follows:
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gk (X —X )+ }\'kgTd

P (19)
' gk+l( kX )
From (16), (17) and (19), we get:
o _E (x, =x") G(x, —x")+r.g'd,
) Fk,+1 ( k+1 _X*) G(Xk+l —-X )
Therefore
2F q, + A8,
pi qk, }\'kg d (20)
2Fk+l qk+1
If we express E and F  as follows, using the derivation the general exponential
function,
— 2(qk (X) + l)e(qk(x)ﬂ)2 (21)
F, =2(q,.,(x)+ e ™" (22)

Solving (15) for q(x) we have:

q(x) = (Inf(x))’ -1 23)
so that F/ = 2f (In(f,))’ (24)
' =2f (In(f,,,))" 25)

By substituting for the f|,,q,., and f| q, in (20), we have
1
B 2’fk (In(f,))* +W

k 1 (26)
2fk+1 (ln( k+1 ))2
. Agd,
Where w = M8 Gy 27)
3- The Memoryless BFGS Quasi-Newton Method
The direction d,_, in the quasi-Newton BFGS method is given by:
dk+1 = _Hk+1gk+1 (28)
where H, ,, is nxn symmetric and positive definite matrix and defined by:
H + ‘H
HkJrl :Hk _[ kYkSk S Yk k] (1+ y kYk) (29)
8, Y, S, Y. S, Yk

If we use the memoryless BFGS (i.e. H, =1, where I is the identity matrix) then
the formula of H_ is defined by:

k+1
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T

+
H,, =1, (28 5y, gy YY) S8 (30)
sk},k s yk S yk
Where s, =a,d, =x,,, —X,. Inthis case, d, , can be written as:
korl — _gkJrl [(1 + ykyk) Skgk+l y gk+l ]S + kgk+l yk

V Yk S Yk S Yk kYk (31)
4- New Multi-step Quasi Newton Method

In this section we drive a new multi-step quasi Newton method based on
memoryless BFGS quasi-Newton method as a conjugate gradient method. This
type of algorithms has been investigated for the first time by Ford and Maghrabi
(Ford and Maghrabi, 1994). Now let us define a new multi-step by:

L =Py (S — 4 Si1) (32)
Wi = (Y — PubhYieor) (33)
T
where 1, = %‘A (34)
Sk—18k—1

and p, is define in (26).
then the matrix in eq(29) is defined by:

new H w,.r' +r.w,H
Hk+1:Hk_[ . kkT Lk k] +(+

W H wk) r1, (35)

If we use the memoryless BFGS then the new direction d,, is defined
T T
: WeW L g Wi T 8
by:d;T) =—g, —[(+ ) It Wy (36)
LW, LW, LW, L Wi

since 1. g,,, = 0. then equation (36) becomes:

T
new W
diip =8t lT(ng I (37)
I, Wy
W
Or equivalentto d,7 =-g , + %rk (38)
I‘k Wk
This search direction can be rewriten as the form:
Ay = =g +B T, (39)
where B, = BuaWe ,and p,,W,, U, 1, are defined in (26, 32-34) respectively,
W,

the property of this multi-step is satisfying the QN-condition:
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Hy ¥y, =5y (40)
we can rewrite (40) by equivalent new form:
Hk+1 wk - I.k (41)

since W, ,I, are defined in (32-33), so the relation (41) must satisfy a modified of
the form:
H (v, =P, ¥o) = (5, =Pk, 8, ) (42)
where p,, 1L, are positive scalar and defined in (26,43) respectively .
now from (42) we obtain:
Hi (Y = Public Yiet) = PiSic = PrckbcSiy
Hy Y =Pt Yicr = Pasi = PrlliSicy
Hy 1Y = PiSk = Pl Sk + Pk Hiyy Yie
= PiSk — Picklic [8io = Hicwy Y]
since (Hy,; Yy =8,)
~ H,,,y, =pS,> which is equivalent to (standard quasi-Newton
condition).
4.1- Outline of New Algorithm
Stepl: Set X, , € (initial point, scalar termination).
Step2: Set k=0.d,_=-g, .
Step3: Set x,,, =X, +A, d, , k=0 where A,_ is obtained from the line search
procedure.
Step4: check for convergence, 1.€. ifﬂngH <e€, stop; otherwise continue.
1
Step5: Compute p, = 21, (n(t)) +?N , where W = Mg d, :
2f,.,(In(f,.,))’
Step6: Compute w_,1,, 1, which are defined in (32-34).
Step7: Compute the new search direction defined by:
d,, =g, +Brd,, k=1, where By is computed by the following

8iaW

MHS

formula B, ==~
L Wi

Step8: if k=n or if Hgg+1ng>O.2Hgk+1H is satisfied go to step (2), else set
k=k+1and go to step then stop. Otherwise go to step 3.
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4.2 global convergence
In order to establish the descent condition and the global convergence of the
new proposed method, we make the following additional assumption.
4.2.1 Assumption
1) The level set Q = {x/f(x) < f(x,)} at x,is bounded.

2) In some neighborhood N of(2, fis continuously differentiable and its gradient
is Lipschitz continuous with Lipschitz constant L >0, i.e.

le(x)—g(y)| < ,forall x,yeN. (43)
The above Assumption implies that there exists a positive constant y such that :
Hg(x)” <y for all X€Q. (44)
4.2.2Theorem

The direction d_, given in (38) satisfies the descent condition
gfl K+ Hgk+1 (45)
Proof:

? , which satisfies (45).

Since d, =—g,, we have ggd0 =—
Now from (8), we have:

T MHS MHS gk+1
d k18 = Hgkﬂ + B 1.g,.., where B
I‘k Wk
T gk+1
d +1gk+1 - Hgkﬂ r gkﬂ
k k

. T _
Since r. g, =0

dk+1gk+1 - _Hgkﬂ
We note that this method always satisfies g, d, :—HngZ <Ofor all k, which

implies the sufficient descent condition (13) with c=1.
Property (¥): Consider the method (2) and (3) , assume that there exists a positive
constant ¥ such that HngH >7 holds for all k. then we say that the method has

Property (*) if there exists constants b >1 and & >0 such that for all k:
B.|<b (46)

1
and |js,[<E= B,|< v (47)

Also we need the following additional Assumption (Ford et al., 2009) to prove the
global convergence of the proposed method.
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4.2.3 Assumption
1) Assume that there exists appositive constant T, such that, for all k

T T
‘gkrk‘ > rl‘gkdk (48)
2) Assume that there exists appositive constant t,such that satisfies 0 <t, <1 and

T T
‘ngYk‘ ‘rk Yk‘

T T
‘ngYk—l I ka1‘

p/uy| < T, min for all k (49)

4.2.4 Theorem: Consider the method (2) and (3) that satisfies the following
conditions:

(1) B, = Ofor all k.

(2) Property (*) holds.

Assume that A, satisfies the strong Wolfe condition (9) and (10). If
Assumption 4.2.1 holds, then the method converges in the sense that

Lim 20| = 0 (Ford et al., 2009).
—>©

Now using the above theorem, we obtain the following global convergence
property.

4.2.5 New Theorem:
Suppose that Assumption 4.2.1 and 4.2.3 are satisfied. Consider the method

(2)-(3) with (38). Assume that A, satisfies the strong Wolfe condition (9) and (10)
=0.

then the new method converges in the sense that Lim Hgk o
k—o0

Proof:
It’s clearly B, > 0. So we only prove that the proposed method satisfies
condition (2) of Theorem (4.2.4). To this end, we assume that there exists a

constant ¥ such that [g, .| > 7 forall k.
It follows from (33) and (49) that:
‘ggﬂwk‘ = ‘gEHYk‘ + pk‘“kgEHYk—l‘
<lglyd+ gy,
<(1+1)lg.Y.
<+ rz)LHgk+1 ‘sk ' (50)
and also from (33), (49), and the fact g_ r. =0 we have
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‘rkka‘ 2 ‘rkTyk‘ — Py ‘MkrkTYk—l‘
> (1-7,)1'y,|

=(-7,)lg5| (51)
It follow from (48) and (45) that:
‘ggrk‘ 2 11‘ggdk‘ = T1Hng2 (52)

Therefore, from (51) yield
w2 0-1,)g (53)
By definition of B}, (50) and (53) and since HskH <A ,we have
‘ggﬂwk‘ < 1+ Tz)LHng ‘SkH < 1+ Tz)LY_AZ _h

ng L (1-1,)y

‘BMHS‘ <

k (54)

Kw|  nd-1)

(1+ T2)72
T (I-1)Lvyb

Now let & =

Then, if HSkH <&, we have

‘BMHS‘ < (+1,)LyA < 1

Sy o )

Therefore, Property (*) holds. Thus from Theorem (4.2.4), the Theorem is true (i.e.
Lim Hgk+1 =0).
k—o0

5 Numerical results

A new non-quadratic model is derived and a new implicit multi-step quasi
Newton method have also been derived, using these two derivations in memoryless
BFGS method and obtain the new modification of HS (modified Hestenes-Stiefel)
method.

We compare MHS with standard HS method. The parameters in the strong
Wolfe line search were chosen to be 0=0.001 and c=0.9. For each test

problem, the termination criterion ingk+1H< 10°, also the value of

T
S 1Sk
T

Sg_18k-1

n, wherep, = is between the (0,1). The numerical results of our
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experiment are reported from Table (1). Each problem was tested with various
value of n changing from n=100, 1000, 10000. The numerical results are given in
the form of NOI (Number of Iterations), NOE (Number of Evaluations) and using
a program written in FORTRAN language.

Table (1)

Comparison the new modified HS method with the standard HS method

Powell 100 93 40 109 41 Penalty 100 8 2 8 2
1000 188 70 109 41 1000 8 2 8 2
10000 177 73 163 57 10000 10 3 10 3
Cantrel 100 198 30 272 36 Cubic 100 49 19 44 16
1000 214 46 | 328 40 1000 48 19 44 16
10000 269 37 370 43 10000 49 19 44 16
Miele 100 186 61 110 34 Sum 100 65 12 65 12
1000 163 60 | 172 47 1000 87 18 82 18
10000 289 94 | 429 157 10000 173 38 185 36
Wolfe 100 89 44 99 49 | Extended 100 27 5 27 5
1000 103 51 141 70 cilff 1000 27 5 27 5
10000 | 280 137 | 399 164 10000 29 6 29 6
Shallow 100 24 10 25 10 | Denschnb 100 21 9 15 6
1000 27 11 25 10 (CUTE) 1000 25 11 18 7
10000 | 27 11 24 9 10000 24 10 18 7
Rosen 100 60 24 54 22 | Dixmaana 100 14 6 12 5
1000 72 29 88 32 (CUTE) 1000 13 5 12 5
10000 67 28 54 22 10000 17 7 12 5
Recip 100 18 6 16 5 | Dixmaanb 100 13 5 13 5
1000 | 18 6 16 5 (CUTE) 1000 13 5 13 5
II 10000 | 25 8 18 6 10000 14 5 14 5
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