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A Spectral Conjugate Gradient Method with

Inexact line searches
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Abstract

In this paper, a new Spectral Conjugate Gradient (SCG) method
for solving unconstrained optimization problems; based on inexact line
searches is investigated. The search directions of the new CG method are
always sufficient descent. The global convergence property of the
proposed method has been proved. Finally, we have presented some
numerical results to examine the efficiency of the proposed method.
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1. Introduction.

We consider the unconstrained optimization problem:
min () | xeR” ) . 0

where f:R" — R is smooth and its gradient g is available.

Conjugate Gradient (CG) methods are very efficient for solving
large-scale unconstrained optimization problems. The iterates of the CG
methods are obtained by :

X, =X, ta,d, (2)

with
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-g k=1,
d.., =< 3)
—&n Tt :Bkdk k>1,

where step-size a, 1s positive, g, =Vf(x,) and g, is a scalar. In addition,
a, 1s a step-length which is computed by carrying out some line search

procedure. There are several line search rules for choosing the step-size
a,, for example, Wolfe-Powell (WP) rule and Strong Wolfe-Powell
(SWP) rule.

In this paper, we have analyzed the results on convergence of the line
search methods with the following line search rule [1]:

flx, +a,d)<f(x)+6,a,d g, (4)
g(x +a,d) d|<=8.d]g, (5)
with 0 <6, <8, <1. Some well know formulas are given as follows :
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Here, (FR) denotes the Fletcher and Reeves (FR) [4], (DY)
denotes the Dai and Yuan [2], (CD) denotes the Conjugate Descent
(CD) [3], (PR) denotes the Polak and Ribiere [8], (HS) denotes the
Hestenes and Stiefel [5], (LS) denotes the Liu and Storey [6], here and
throughout, y, =g,, - g,.

In [7] Matonoha et al proposed a modified Conjugate Descent (CD)
method, which was denoted by (MCD) and given:

dk+1 = _q)liwCngﬂ +ﬁkCde7 d() ==80 e (12)
where the values ¢, B° are determined by:
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id 18
prr = 2l opor Sk (13)
‘gkdk ‘gkdk

In this note, we have introduced a modification to the CG-method
of the parameter ¢, defined by:
e Heradd+vid,

"M = L (14)
jgid,]

Note that if we use an exact line search, our modified SCG method

(called MMCD) reduces to the method of CD. However, here in this
work, we have considered general nonlinear test functions with inexact
line searches.

The sufficient descent and global convergence properties of our
proposed CG-method will be established later on. Finally, some
numerical evidence will be listed to support our findings.

2. New CG-Method with the Convergence Property.

As in [2], we assume that the continuously differentiable function

f(x) 1s bounded in the level set L ={ }, where x, is the

starting point; and that g(x) is Lipschitz continuous in L, that, there exists
a constant u >0 such that:

||g(xk+1) — g(xk)” < u”xk+1 — xeU. L (15)
Now we present the outline of the new proposed algorithm as follows :

2.1 Outline of The New Algorithm:
Step 0 : Given x,eR", u=1.1, £ =0.0001, 5, €(0,1), 5, €(0,1/2) ,d, = —g,

Step 1 : Computing g, ; if |g,[|<e, then stop ; else continue .

Step 2 : Set B, =B, @™ = ,u‘g,i‘ld ‘+‘ydek
g, d

Step 3 : Set x,, =x, +a,d, , (Use SW-conditions to compute e, )

Step 4 : Compute d,,, =-¢.g,.,+B.d,,
Step5: If k =n, go to Step 1 with new values of x,, and g, ,.

Here we have to present several theoretical results and as follows:
Theorem (2.2).
Suppose that 4,,, is given by (12) and (14). Then, the following

result:
2
Gl < _C||gk+1|| <0 L (16)
holds of the sufficient descent property.

Proof.
Firstly, for £ =0, it is easy to see that (16) is true since d, =-g,.

Secondly, assume that:
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gid, <—c|g| <0 where 0<c<1 . (17)

holds for & when k >1. Multiplying (12) by g/ ,, we have:
gladis =0 g + B gk ad,

LUNAEICTNN

EAA S

from (5) and (17), we get:

T u‘dzgk+l
gk+ldk+l = T .
‘gk d,

yk gk+1

T dk

la]”

2

||gk+l ||

T 71 Sk
gy

" "2 _glirldk _ngdk
k+1 ‘ Td ‘

||gk+l||

L A PR 1
C||gk||2 ||gk+1|| " k" " k+1||
_ usdg,|” +dsg.|’ 7 19)
de.l -
=gl [1+u3)]

=—C ||gk+1 "

ngJrlkorl S_Cl||gk+1"2
This completes the proof.
Lemma (2.3) :

If the sequence {xk} is generated by (2) and (3), the step size
a, satisfies (4) and (5), and 4, , 1s a descent direction, f is bounded and

g(x) 1s Lipschitz in the level set, then:

(8:dy)” _
Z L o (20)
A

For the proof see [9].
Theorem (2.4).

If ©>0 in (14), f1s bounded and g(x) is Lipschitz in the level set,
then our algorithm either terminates at a stationary point or
im inf 2, =0

Proof :
If our conclusion does not hold, then there exists a real number

g >0 such that ||g,,,|>¢ forall k=1,23,.......

BLV

Squaring the both terms of &, ., + ¢ g,., = B.d,, we get:

el + @2 VLl + 208 Ao =B e e
from (21), we get:
||dk+1|| _:Bk ”d ” _2(/)15MLV kT+1gk+1 ((PfMLV) ||gk+1||2 """"" (22)
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Dividing both sides of (22) by g/, d,,,, by (16),(17) and |g,.,|> &, we
have:

2
Jo [ugmnz] A N

(! +1gk+1) ‘gka’ ‘ , +1gk+1) , +1gk+1) d; 18t
ls.| }‘ laf o el e 1
9) 2" — (24)
[fﬂgk" 2||gk+1|| gl g
[|gk+1 } "d " [ MLV|gk+1 { 1 } { 1
Cﬂgk" |gk+l Cigkﬂ ||gk+1|| |gk+1 ’

7 Y R P 1

< S——+— (25)
(d/18)’ c4||gk||2 ||gk+l||2 c4||gk||2 &
Since d, =-g,, so that:
ol P k-1 1 k-1 k-1 _k
(dk+1gk+1) (d1 g1) 512 ||g1||2 512 512 512 512 """"" (26)
Thus
< (ngdk)z N 812
> — =% 2
Zul & @

Which is contrary to Theorem (2.4). Hence, the proof is complete.
3. Numerical Results.

In this section, we reported some numerical results obtained with
the implementation of the new CG-method on a set of unconstrained
optimization test problems. We have selected (10) large scale
unconstrained optimization problems in extended or generalized form, for
each test function we have considered numerical experiment with the
number of variable n=100-1000. Using the standard Wolfe-Powell line
search given in conditions (4) and (5) with &, =0.0001, §,=0.9 and
p=1.1. In all these cases, the stopping criteria is the |g,[<10". The
programs were written in Fortran 90. The test functions were commonly
used for unconstrained test problems with standard starting points and a
summary of the results of these test functions was given in Table (3.1).
We tabulate for comparison of these algorithms, the Number Of
Function evaluations (NOF) and the Number Of Iterations (NOI) .
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Table (3.1)
CD-algorithm New-algorithm | MLV -algorithm
No. n
NOF NOF NOF
(NOJ)) (NOJ)) (NOJ))
1 100 218 367 218
(105) (181) (105)
1000 2004 2006 1998
(1001) (1002) (998)
2 100 899 218 751
(154) (107) (293)
3 100 366 237 248
(111) (105) (102)
1000 971 864 690
(357) (375) (279)
4 100 123 148 148
(20) (25) 27)
1000 165 170 218
(24) (24) (33)
5 100 2220 135 278
(326) (65) (106)
1000 ko 352 522
***) (169) (229)
6 100 101 77 99
(50) (38) (49)
1000 Bk 101 229
***) (50) (114)
7 100 2005 94 229
(302) (40) (103)
(F**¥) (F**¥) (295)
8 100 605 19 207
(105) (8) (101)
1000 Bk 15 461
***) (6) (228)
9 100 66 67 69
(14) (17) (14)
1000 121 66 109
(26) 21 (25)
10 100 75 135 85
37 (67) (42)
1000 85 78 &9
(42) 38) (44)
Total 10024 4681 5436
(2674) (2113) (2321)
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4. Conclusions and Discussions.

In this paper, we have proposed a new spectral CG method for
solving unconstrained minimization problems. The computational
experiments show that the new approach given in this paper is successful.

Table (3.1) gives a computational results of the new algorithm
against the CD and MCD algorithms for convex optimization, this table
indicates that the new algorithm saves about (75-86)% NOI and
(80-91)% NOF, overall, against the standard CD and MCD algorithms,
respectively, especially for our selected test problems. These results are
shown in the following tables:

Table (3.2): Relative efficiency of the new algorithm against CD-

algorithm.
Tools NOI NOF
CD -algorithm 100 % 100 %
New-algorithm 25 % 20 %

Table (3.3): Relative efficiency of the new algorithm against
MCD-algorithm.

Tools NOI NOF
MCD -algorithm 100 % 100 %
New-algorithm 14 % 9 %

Appendix.

1.Generalize d powell function :

n/4
S(x)= Z (X4 =100, 5) " 500y, = xy)" + (rgy = 220)" +10(x,, —x4)" + (05 =234, —X,)7)
i=1

Starting point:(3,1,0,1,..cccceeceverinnne e )

2.Generalize d wood function :
fx) = LA(x,, - xfl;})z +(1- x4i—3)2 +90(x,, - xii—l)z +(1- x4i—1)2 +
i=l 10.1((x, 5 =17 + (x5, =1 +19.8((x4, 5, = 1) + (x4, = 1)

Starting point:(=3,—1,-3,~Leccevv covrrres . )’
3. Miele function :

n/4

S(x) = Z [exp(xy; 5) = X, 517 +100(x,, 5 —x,, ) +[tan(x,, , —x,)]* + x5+ (x, —1?
]

Starting point: (1,2, 2, 2,ccceeveennn. )
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4.Cantrell function :
n/4

f(x) = Z [exp( x4, 3) = x4, 1* +100 (xy 5 = xy) +[tan (o — X, )] + x5,

i=1
Starting point: (1,2, 2, 2,cceccee e )’

5. Rosenbrock  function
n/2

f(x) = Z (100 (x2i - xzzifl)z +(1- xzpl)z)

i=1

Starting  po int :(-=1.2,1,-1.2,1,...) "

6. Welfefunction

F(x) =(=x,(3—x,/2)+2x, —1)° Jri(xl._1 —x,3—x,3—x,/2)+2x,,, —1)* +(x

i=1

—x,(3x, /2-1)

n+l

Startingpoint: (<1, .......cocevevve. Yy
7.Non — diagonal  function
n/2
f(x)=2(100 (x; = x))* + (1= x,)?)
i=1
Starting  po int :(—1,cceeee veveenes . )’
8. Penalty 2 function :
f(x) =" 4 (x(i)* - 0.25)°
Starting point: (1,2, ccccovevvvvveenne )
9.Sum of Quartics function
S =2 -’
i=1
Startingpoint: (2, ........ceveeenee. Y

10. Beale function :
f(x)=15-x(1-x,))"+(2.25-x,1-x3)* +(2.652 —x,(1-x3;)*

Starting point: (0,0, ....cccceevevenneen ... )
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