Performance of Some Yang and Chang estimators in Logistic Regression Model.
Abstract
In logistic regression models, the maximum likelihood (ML) method is always one of the commonly used to estimate the model parameters. However, unstable parameter estimates are obtained as a result due to the problem of multicollinearity and the mean square error (MSE) gotten cannot also be relied on. Several biased estimators has been proposed to handle the issue of multicollinearity and the logistic Yang and Chang estimator (LYC) is one of them. Likewise research has also made us to understand that the biasing parameter has effect too on the value of the MSE. In this paper we proposed seven LYC biasing estimators and they were all subjected to Monte Carlo simulation studies and Pena data set was also used too. The result from the simulation study shows that LYC estimators outperforms the Logistic Ridge Regression (LRR) and the ML approach. Furthermore, application to Pena real data set also conform to the simulation results
References
- Alkhamisi, M. A., Khalaf, G., Shukur, G. . Some modifications for Choosing Ridge Parameter. Communications in Statistics: Theory and Methods, 2006;35: 116.
- Alkhamisi, M., Shukur, G. . Developing ridge parameters for SUR model. Communications in Statistics: Theory and Methods, 2008;37,:544564.
- Awwad, F. A., Odeniyi, K.A, Dawoud, I, Yahya,Z., Abonazel,M.R, Kibria,B.M, Eldin, E.T. . New Two-Parameter Estimators for the Logistic Regression Model with Multicollinearity. WSEAS TRANSACTIONS on MATHEMATICS.2022; 21:403414. https://doi.org/10.37394/23206.2022.21.48
- Ayinde, K., Lukman, A.F., Samuel, O.O., Ajiboye, S.A.Some new adjusted ridge estimators of linear regression model. International Journal Civil Engineerint Technology.,2018; 9, 28382852.
- Dempster, A. P., Schatzoff, M., Wermuth, N. . A simulation study of alternatives to ordinary least squares. Journal of the American Statistical Association, 1977;72: 7791.
- Frisch, R. . Statistical confluence analysis by means ofcomplete regression systems. Publication 5. Oslo: University Institute of Economics.
- Gibbons, D. G. . A simulation study of some ridge estimators. Journal of the American Statistical Association,1981; 76:131139.
- Hoerl, A. E., Kennard, R. W. . Ridge regression: Application to non-orthogonal problems. Technometrics, 1970,12(1): 6982.
- Hoerl, A.E., Kennard, R.W. Ridge regression: biased estimation for nonorthogonal problems, Technometrics, 1970a;12(1): 5567. https://doi.org/doi:10.1080/00401706.1970.10488634.
- Hoerl, A.E., Kennard, R.W., Baldwin, K.F. Ridge regression: Some simulation. Commun. Stat. Theory Methods. 1975;4: 105123. https://doi.org/doi:10.1080/03610927508827232
- Idowu,J.I.,Oladapo,O.J.,Owolabi,A.T., Ayinde,K.. . On the Biased Two-Parameter Estimator to Combat Multicollinearity in Linear Regression Model. African Scientific Reports 2022;1:188204. https://doi.org/10.46481/asr.2022.1.3.57
- Kibria, B. M. G., Mnsson,K., Shukur,G. . Performance of some logistic ridge regres- sion estimators. Computational Economics 2012;40 (4):40114. https://doi.org/10.1007/s10614-011-9275-x.
- Kibria, B.M.G. Performance of some new ridge regression estimators, Communications in Statistics Simulation and Computation, 2003;32(2), 419435. https://doi.org/10.1081/S.AC-120017499.
- Lawless, J. F., Wang, P. A simulation study of ridge and other regression estimators. Com- munications in Statistics: Theory and Methods, 1976;5, 307323.
- Lukman A.F., Ayinde K., Review and classifications of the ridge parameter estimation techniques. Hacet J Math Stat ,2017;46(5):953967
- Lukman AF, Ayinde K, Binuomote S, & Clement OA Modified ridge-type estimator to combat multicollinearity: Application to chemical data. Journal of Chemometrics 2019;33: e3125. https://doi.org/ 10.1002/cem.3125
- Lukman, A. F., Emmanuel, A., Clement, O. A., Ayinde, K. A Modified Ridge-Type Logistic Estimator. Iranian Journal of Science and Technology, Transactions A: Science, 2020;44(2), 437443. https://doi.org/10.1007/s40995-020-00845-z
- Mnsson, K., Shukur, G. On ridge parameters in logistic regression. To appear in Communications in Statistics: Theory and Methods.
- Mnsson, K., Shukur, G., & Kibria, B. M. G. . A simulation study of some ridge regression estimators under different distributional assumptions. Communications in Statistics: Simulation and Computation, 2010;39: 16391670.
- McDonald, G. C., & Galarneau, D. I. . A Monte Carlo evaluation of some ridge-type estimators. Journal of the American Statistical Association,1975; 70:407416.
- Muniz G., Golam Kibria B. M., Shukur, G. (On developing ridge regression parameters: A graphical investigation. Submitted for Publication in SORT 2011.
- Muniz, G., Kibria, B. M. G. . On some ridge regression estimators: An empirical compari sons. Communications in Statistics: Simulation and Computation, 2009;38: 621630
- Newhouse J. P., Oman S. D. An evaluation ofridge estimators. Rand Corporation,1971;(P-716-PR), 1-16.
- Oladapo, O. J., Owolabi,A.T, Idowu,J.I, Ayinde K.. A New Modified Liu Ridge-Type Estimator for the Linear Regression Model: Simulation and Application. Clinical Biostatistics and Biometrics. 2022;8(2):114. https://doi.org/10.23937/2469-5831/1510048
- Owolabi, A. T., Ayinde, K., & Alabi, O. O. . African Scientific Reports A Modified Two Parameter Estimator with Di ff erent Forms of Biasing Parameters in the Linear Regression. 2022;1, 212228.
- Owolabi, A. T.,Ayinde,K., Idowu,J.I., Oladapo,O.J., Adewale,A.F. . A New Two-Parameter Estimator in the Linear Regression Model with Correlated Regressors. Journal of Application and Probability. 2022;11(2):499512. http://dx.doi.org/10.18576/jsap/110211
- Pena, W, Massaguer P.D, Zuniga, A, Saraiva S.H .Modeling the growth limit of Alicyclobacillus acidoterrestris CRA7152 in apple juice: effect of pH, Brix, temperature and nisin concentration. Journal of Food Processing and Preservation ,2011;35 (4):50917. https://doi.org/10.1111/j.1745-4549.2010.00496.x
- Schaefer R. L.Alternative regression collinear estimators in logistic when the data are col- linear. Journal of Statistical Computation and Simulation ,1986;25 (12):7591.
- Schaefer R.L., Roi L.D., Wolfe R.A., A ridge logistic estimator, Commu- nications in Statistics Theory and Methods,1984; 13(1): 99113.