A Parametric Regression Model using Power Chris-Jerry Distribution with Application to Censored Data

Section: Research Paper
Published
Jun 25, 2025
Pages
76-89

Abstract

The interdependency of various areas of Statistics is gaining good attention in the literature. This is possible through innovations such as the log-transformation of distribution to a parametric regression model hence integrating contemporary probability distribution models with the classical regression method. The new model is essentially preferred due to its applicability in wider scenarios. In this article, the base distribution is the Power Chris-Jerry distribution. The reparametrized regression model equivalent was carefully derived with the maximum estimation procedure under censored sample also considered. A simulation study of the log-power Chris-Jerry regression model was carried out with measures of performance presented. The COVID-19 patient lifetime censored data was deployed to justify the motivation for developing the new model and twelve competing models were used to compare the proposed regression. The results show that the proposed model is indeed better and preferred to its competitors.

References

  1. Abebe, B., Tesfay, M., Eyob, T., & Shanker, R. (2019). A two-parameter power Rama distribution with properties and applications.Biometrics and Biostatistics International Journal,8(1), 6-11.
  2. Aidi, K., Al-Omari, A. I., & Alsultan, R. (2022). The Power Zeghdoudi Distribution: Properties, Estimation, and Applications to Real Right-Censored Data.Applied Sciences,12(23), 12081.
  3. Anabike, I. C., Igbokwe, C. P., Onyekwere, C. K., & Obulezi, O. J. (2023). Inference on the parameters of Zubair-Exponential distribution with application to survival times of Guinea Pigs.Journal of Advances in Mathematics and Computer Science,38(7), 12-35.
  4. Ashour, S. K., & Eltehiwy, M. A. (2015). Exponentiated power Lindley distribution.Journal of advanced research,6(6), 895-905.
  5. Badmus, N. I., Akinyem, M. I., & Onyeka-Ubaka, J. N. (2021). A Log-Beta Rayleigh Lomax Regression Model.Afrika Statistika,16(4), 2993-3007.
  6. Biazatti, E. C., Cordeiro, G. M., Rodrigues, G. M., Ortega, E. M., & de Santana, L. H. (2022). A Weibull-beta prime distribution to model COVID-19 data with the presence of covariates and censored data.Stats,5(4), 1159-1173.
  7. Chinedu, E. Q., Asogwa, E. C., Sunday, B. T., Onyeizu, N. M., & Obulezi, J. O. (2023b). Unraveling Emotions: Contemporary Approaches in Sentiment Analysis.J Sen Net Data Comm,3(1), 223-230.
  8. Chinedu, E.Q.; Chukwudum, Q.C.; Alsadat, N.; Obulezi, O.J.; Almetwally, E.M.; Tolba, A.H. New Lifetime Distribution with Applications to Single Acceptance Sampling Plan and Scenarios of Increasing Hazard Rates.Symmetry2023a,15, 1881. https://doi.org/10.3390/sym15101881
  9. Chukwuma, P. O., Harrison, E. O., Ibeakuzie, P., Anabike, I. C., & Obulezi, O. J. (2024). A new reduced quantile function for generating families of distributions.Ann Math Phys,7(1), 001-015.
  10. Cordeiro, G. M., Biazatti, E. C., & de Santana, L. H. (2023). A New Extended Weibull Distribution with Application to Influenza and Hepatitis Data.Stats,6(2), 657-673.
  11. Eliwa, M. S., Altun, E., Alhussain, Z. A., Ahmed, E. A., Salah, M. M., Ahmed, H. H., & El-Morshedy, M. (2021). A new one-parameter lifetime distribution and its regression model with applications.Plos one,16(2), e0246969.
  12. Etaga, H. O., Nwankwo, M. P., Oramulu, D. O., & Obulezi, O. J. (2023a). An Improved XShanker Distribution with Applications to Rainfall and Vinyl Chloride Data.Sch J Eng Tech,9, 212-224.
  13. Etaga, H. O., Nwankwo, M. P., Oramulu, D. O., Anabike, I. C., & Obulezi, O. J. (2023c). The Double XLindley Distribution: Properties and Applications.Sch J Phys Math Stat,10, 192-202.
  14. Etaga, H. O., Onyekwere, C. K., Lydia, O. I., Nwankwo, M. P., Oramulu, D. O., & Obulezi, O. J. (2023b). Estimation of the Xrama Distribution Parameter Under Complete and Progressive Type-II Censored Schemes.Sch J Phys Math Stat,10, 203-219.
  15. Ezeilo, C. I., Umeh, E. U., Osuagwu, D. C., & Onyekwere, C. K. (2023). Exploring the impact of factors affecting the lifespan of HIVs/AIDS patients Survival: An investigation using advanced statistical techniques.Open Journal of Statistics,13(4), 595-619.
  16. Ferreira, A. A., & Cordeiro, G. M. (2023). The exponentiated power Ishita distribution: Properties, simulations, regression, and applications.Chilean Journal of Statistics (ChJS),14(1).
  17. Gallardo, D. I., Gmez, Y. M., & Segovia, F. A. (2021). Exponentiated power Maxwell distribution with quantile regression and applications.SORT-Statistics and Operations Research Transactions,45(2), 181-200.
  18. Ghitany, M. E., Al-Mutairi, D. K., Balakrishnan, N., & Al-Enezi, L. J. (2013). Power Lindley distribution and associated inference.Computational Statistics & Data Analysis,64, 20-33.
  19. Musa, A., Onyeagu, S. I., & Obulezi, O. J. (2023). Comparative Study Based on Simulation of Some Methods of Classical Estimation of the Parameters of Exponentiated LindleyLogarithmic Distribution.Asian Journal of Probability and Statistics,22(4), 14-30.
  20. Musa, A., Onyeagu, S. I., & Obulezi, O. J. (2023). Exponentiated Power Lindley-Logarithmic distribution and its applications.Asian Research Journal of Mathematics,19(8), 47-60.
  21. Nadarajah, S., & Kotz, S. (2003). The exponentiated Frchet distribution.Interstat Electronic Journal,14, 01-07.
  22. Nasiru, S., Abubakari, A. G., & Chesneau, C. (2022). New Lifetime Distribution for Modeling Data on the Unit Interval: Properties, Applications and Quantile Regression.Mathematical and Computational Applications,27(6), 105.
  23. Nwankwo, B. C., Orjiakoh, J. N., Nwankwo, M. P., Chukwu, E. I. M. I., & Obulezi, O. J. (2024). A New Distribution for Modeling both Blood Cancer Data and Median Effective Dose (ED50) of Artemether-Lumefantrine against P. falciparum.Earthline Journal of Mathematical Sciences,14(1), 41-62.
  24. Nwankwo, M. P., Nwankwo, B. C., & Obulezi, O. J. (2023). The Exponentiated Power Akash Distribution: Properties, Regression, and Applications to Infant Mortality Rate and COVID-19 Patients Life Cycle. Annals of Biostatistics and Biometric Applications, 5(4), 1-12.
  25. Obulezi, O. J. and Anabike, I. C. and Okoye, G.C. and Igbokwe, C. P. and Etaga, H. O. and Onyekwere, C. K. (2023a), The Kumaraswamy Chris-Jerry Distribution and its Applications. In: Journal of Xidian University 17(6), 575 591.
  26. Obulezi, O. J., Chinedu, E. Q., Oramulu, D. O., Etaga, H. O., Onyeizu, N. M., & Ejike, C. O. (2023c). Machine Learning Models for Predicting Transportation Costs Inflated by Fuel Subsidy Removal Policy in Nigeria.Int. Res. J. Mod. Eng. Technol. Sci,5, 1053-1070.
  27. Obulezi, O. J., Nwankwo, B. C., Nwankwo, M. P., Anabike, I. C., Igbokwe, C. P., & Igwebudu, C. N. (2023e). Modeling Mortality Rate of COVID-19 Patients in the United Kingdom, Canada, and the Survival Rate of COVID-19 Patients in Spain. Journal of Xidian University, 17(11), 520-538.
  28. Obulezi, O. J., Obiorah, U. E., Anabike, I. C., & Igbokwe, C. P. (2023b). The Exponentiated Power Chris-Jerry Distribution: Properties, Regression, Simulation and Applications to Infant Mortality Rate and Lifetime of COVID-19 Patients.TWIST,18(4), 328-337.https://twistjournal.net/twist/article/view/125
  29. Obulezi, O., Igbokwe, C. P., & Anabike, I. C. (2023d). Single acceptance sampling plan based on truncated life tests for zubair-exponential distribution.Earthline Journal of Mathematical Sciences,13(1), 165-181.
  30. Oha, F. C., Etaga, H. O., Ibeakuzie, P. O., Anabike, I. C., & Obulezi, O. J. (2024). Power XShanker Distribution: Properties, Estimation, and Applications.Eng OA,2(1), 01-20.
  31. Onyekwere, C. K., and Obulezi, O. J. (2022). Chris-Jerry distribution and its applications.Asian Journal of Probability and Statistics,20(1), 16-30.
  32. Onyekwere, C. K., Okoro, C. N., Obulezi, O. J., Udofia, E. M., & Anabike, I. C. (2022). Modification of Shanker distribution using quadratic rank transmutation map.Journal of Xidian University,16(8), 179-198.
  33. Oramulu, D. O., Etaga, H. O., Onuorah, A. J., & Obulezi, O. J. (2023b). A New Member in the Lindley Class of Distributions with Flexible Applications.Sch J Phys Math Stat,7, 148-159.
  34. Oramulu, Dorathy O.andIgbokwe, Chinyere P.andAnabike, Ifeanyi C.andEtaga, Harrison O.andObulezi, Okechukwu J.(2023a)Simulation Study of the Bayesian and Non-Bayesian Estimation of a new Lifetime Distribution Parameters with Increasing Hazard Rate.Asian Research Journal of Mathematics, 19 (9). pp. 183-211. ISSN 2456-477X
  35. Pal, M., Ali, M. M., & Woo, J. (2006). Exponentiated weibull distribution.Statistica,66(2), 139-147.
  36. Rady, E. H. A., Hassanein, W. A., & Elhaddad, T. A. (2016). The power Lomax distribution with an application to bladder cancer data.SpringerPlus,5, 1-22.
  37. Reis LDR. The Pezeta regression model: an alternative to unit Lindley regression model. Biom Biostat Int J. 2023;12(4):107112.DOI: 10.15406/bbij.2023.12.00393
  38. Rodrigues, G. M., Vila, R., Ortega, E. M., Cordeiro, G. M., & Serra, V. (2022). New results and regression model for the exponentiated odd log-logistic Weibull family of distributions with applications.arXiv preprint arXiv:2203.14189.
  39. Shukla, K. K., & Shanker, R. (2018). Power Ishita distribution and its application to model lifetime data.Statistics in Transition new series,19(1).
  40. Tolba, A. H., Onyekwere, C. K., El-Saeed, A. R., Alsadat, N., Alohali, H., & Obulezi, O. J. (2023). A New Distribution for Modeling Data with Increasing Hazard Rate: A Case of COVID-19 Pandemic and Vinyl Chloride Data.Sustainability,15(17), 12782.
  41. Wongrin, W., & Bodhisuwan, W. (2017). Generalized PoissonLindley linear model for count data.Journal of Applied Statistics,44(15), 2659-2671.

Identifiers

Download this PDF file

Statistics

How to Cite

I. Ezeilo, C., S. Onyeagu, I., & E. Umeh, U. (2025). A Parametric Regression Model using Power Chris-Jerry Distribution with Application to Censored Data. IRAQI JOURNAL OF STATISTICAL SCIENCES, 21(1), 76–89. Retrieved from https://rjps.uomosul.edu.iq/index.php/stats/article/view/20599