Smoothing parameter selection in Nadaraya-Watson kernel nonparametric regression using nature-inspired algorithm optimization.
Abstract
In the context of Nadaraya-Watson kernel nonparametric regression, the curve estimation is fully depending on the smoothing parameter. At this point, the nature-inspired algorithms can be used as an alternative tool to find the optimal selection. In this paper, a firefly optimization algorithm method is proposed to choose the smoothing parameter in Nadaraya-Watson kernel nonparametric regression. The proposed method will efficiently help to find the best smoothing parameter with a high prediction. The proposed method is compared with four famous methods. The experimental results comprehensively demonstrate the superiority of the proposed method in terms of prediction capability.
References
- Abramson, I. S. (1982). On bandwidth variation in kernel estimates-a square root law. The Annals of Statistics, 1217-1223.
- Ali, T. H. (2019). Modification of the adaptive Nadaraya-Watson kernel method for nonparametric regression (simulation study). Communications in Statistics - Simulation and Computation, 1-13. doi:10.1080/03610918.2019.1652319
- Chen, S. (2015). Optimal Bandwidth Selection for Kernel Density Functionals Estimation. Journal of Probability and Statistics, 2015, 1-21. doi:10.1155/2015/242683
- Chu, C. (1995). Bandwidth selection in nonparametric regression with general errors. Journal of statistical planning and inference, 44(3), 265-275.
- Chu, C.-K., & Marron, J. S. (1991). Comparison of two bandwidth selectors with dependent errors. The Annals of Statistics, 19(4), 1906-1918.
- Dobrovidov, A. V., & Rudsko, I. M. (2010). Bandwidth selection in nonparametric estimator of density derivative by smoothed cross-validation method. Automation and Remote Control, 71(2), 209-224. doi:10.1134/s0005117910020050
- Feng, Y., & Heiler, S. (2009). A simple bootstrap bandwidth selector for local polynomial fitting. Journal of Statistical Computation and Simulation, 79(12), 1425-1439. doi:10.1080/00949650802352019
- Fister, I., Fister, I., Yang, X.-S., & Brest, J. (2013). A comprehensive review of firefly algorithms. Swarm and Evolutionary Computation, 13, 34-46. doi:10.1016/j.swevo.2013.06.001
- Francisco-Fernndez, M., & Vilar-Fernndez, J. M. (2005). Bandwidth selection for the local polynomial estimator under dependence: a simulation study. Computational Statistics, 20(4), 539-558.
- Friedman, J. H., & Stuetzle, W. (1981). Projection pursuit regression. Journal of the American Statistical Association, 76(376), 817-823.
- Gao, J., & Gijbels, I. (2012). Bandwidth Selection in Nonparametric Kernel Testing. Journal of the American Statistical Association, 103(484), 1584-1594. doi:10.1198/016214508000000968
- Hazelton, M. L., & Cox, M. P. (2016). Bandwidth selection for kernel log-density estimation. Computational Statistics & Data Analysis, 103, 56-67. doi:10.1016/j.csda.2016.05.003
- Karthikeyan, S., Asokan, P., & Nickolas, S. (2014). A hybrid discrete firefly algorithm for multi-objective flexible job shop scheduling problem with limited resource constraints. The International Journal of Advanced Manufacturing Technology, 72(9-12), 1567-1579. doi:10.1007/s00170-014-5753-3
- Kauermann, G., & Opsomer, J. D. (2004). Generalized Cross-Validation for Bandwidth Selection of Backfitting Estimates in Generalized Additive Models. Journal of Computational and Graphical Statistics, 13(1), 66-89. doi:10.1198/1061860043056
- Kolek, J., & Horov, I. (2017). Bandwidth matrix selectors for kernel regression. Computational Statistics, 32(3), 1027-1046. doi:10.1007/s00180-017-0709-3
- Kyung Lee, Y., Park, B. U., & Su Park, M. (2007). A simple and effective bandwidth selector for local polynomial quasi-likelihood regression. Journal of Nonparametric Statistics, 19(6-8), 255-267. doi:10.1080/10485250701761086
- Lee, T. C., & Solo, V. (1999). Bandwidth selection for local linear regression: a simulation study. Computational Statistics, 14(4), 515-532.
- Leungi, D. H. Y., Marriott, F. H. C., & Wu, E. K. H. (1993). Bandwidth selection in robust smoothing. Journal of Nonparametric Statistics, 2(4), 333-339. doi:10.1080/10485259308832562
- Li, J., & Palta, M. (2009). Bandwidth selection through cross-validation for semi-parametric varying-coefficient partially linear models. Journal of Statistical Computation and Simulation, 79(11), 1277-1286. doi:10.1080/00949650802260071
- Nychka, D. (1991). Choosing a range for the amount of smoothing in nonparametric regression. Journal of the American Statistical Association, 86(415), 653-664.
- Opsomer, J. D., & Miller, C. P. (2007). Selecting the amount of smoothing in nonparametric regression estimation for complex surveys. Journal of Nonparametric Statistics, 17(5), 593-611. doi:10.1080/10485250500054642
- REFERENCES
- Rice, J. (1984). Bandwidth choice for nonparametric regression. The Annals of Statistics, 12(4), 1215-1230.
- Schucany, W. R. (1995). Adaptive Bandwidth Choice for Kernel Regression. Journal of the American Statistical Association, 90(430), 535-540. doi:10.1080/01621459.1995.10476545
- Scott, D. W., & Terrell, G. R. (1987). Biased and unbiased cross-validation in density estimation. Journal of the American Statistical Association, 82(400), 1131-1146.
- Silverman, B. W. (1986). Density estimation for statistics and data analysis (Vol. 26): CRC press.
- Slaoui, Y. (2016). Optimal bandwidth selection for semi-recursive kernel regression estimators. Statistics and Its Interface, 9(3), 375-388. doi:10.4310/SII.2016.v9.n3.a11
- Steland, A. (2012). Sequential Data-Adaptive Bandwidth Selection by Cross-Validation for Nonparametric Prediction. Communications in Statistics - Simulation and Computation, 41(7), 1195-1219. doi:10.1080/03610918.2012.625853
- Utami, T. W., Haris, M. A., Prahutama, A., & Purnomo, E. A. (2020). Optimal knot selection in spline regression using unbiased risk and generalized cross validation methods. Journal of Physics: Conference Series, 1446, 012049. doi:10.1088/1742-6596/1446/1/012049
- Yang, X.-S. (2013). Multiobjective firefly algorithm for continuous optimization. Engineering with Computers, 29(2), 175-184.
- Yelghi, A., & Kse, C. (2018). A modified firefly algorithm for global minimum optimization. Applied Soft Computing, 62, 29-44. doi:10.1016/j.asoc.2017.10.032
- Yoon Kim, T., & Park, C. (2002). Regression Smoothing Parameter Selection Using Cross Residuals Sum. Communications in Statistics - Theory and Methods, 31(12), 2275-2287. doi:10.1081/sta-120017225
- Zhang, Z. G., Chan, S. C., Ho, K. L., & Ho, K. C. (2008). On Bandwidth Selection in Local Polynomial Regression Analysis and Its Application to Multi-resolution Analysis of Non-uniform Data. Journal of Signal Processing Systems, 52(3), 263-280. doi:10.1007/s11265-007-0156-4
- Zhou, H., & Huang, X. (2018). Bandwidth selection for nonparametric modal regression. Communications in Statistics - Simulation and Computation, 48(4), 968-984. doi:10.1080/03610918.2017.1402044
- ychaluk, K. (2014). Bootstrap bandwidth selection method for local linear estimator in exponential family models. Journal of Nonparametric Statistics, 26(2), 305-319. doi:10.1080/10485252.2014.885023