Parameters estimation of homogeneous gamma process via intelligence techniques.
Abstract
Recently, the Gamma process has been increasing used to model stochastic deterioration for optimizing maintenance because are well suited for modeling the temporal variability of deterioration. In this paper, we discussed two algorithms of the intelligent technique algorithms with moment method for estimating the parameters of the homogeneous gamma process. The application results demonstrate that the intelligent techniques estimation methods are considerably consistent in estimation compared to the moment method, using mean absolute error (MAE).
References
- Abdel-Hameed, M. (1975). "A gamma wear process." IEEE Transactions on Reliability 24(2): 152153.
- Cox, D. R. and Lewis P.A.W (1966). "The Statistical Analysis of Series of Events." Mathuen, London.
- Dickson, D. C. M. and H. R. Waters (1993). "Gamma Processes and Finite Time Survival Probabilities." Astin Bulleti 23(2).
- Dufresne, F., Gerber, H.U. and Shiu, E.S.W (1991). "Risk theory and the gamma process." ASTIN Bulletin 22: 177-192.
- Faris, H., I. , Aljarah and a. S. Mirjalili (2017). "Improved monarch butterfly optimization for unconstrained global search and neural network training." Applied Intelligence 48(2): 445-464.
- Haddad, O. B. (2018). "Advanced Optimization by Nature-Inspired Algorithms." Springer Nature Singapore Pte Ltd.
- Kennedy, J. and a. R. C. Eberhart (1995). "Particle swarm optimization." Proceedings of IEEE Conference on Neural Network 4: 19421948.
- Lawless, J. and M. Crowder (2004). "Covariates and random effects in a gamma process model with application to degradation and failure." Lifetime Data Anal 10(3).
- Osman, I. H., and J. P. Kelly (1996). "Meta-heusirtics: theory and applications." Kluwer Academic Publishers.
- Parsopoulos K, E. and N. Vrahatis M (2010). "Particle Swarm Optimization and Intelligence Advances and Applications." United States by America, IGI Global.
- Rao, S. S. (2009). "Engineering Optimization Theory and Practice." John Wiley and Sons, Inc. 4th ed.
- Roussignol, M. (2009). "Gamma stochastic process and application to maintenance." University Paris-EST, Marne-la-vallee.
- Tilahun, S. L. and J. M. T. Nnotchouyge (2017). "Firefly algorithm for discrete optimization problems: A survey." KSCE Journal of Civil Engineering 21(2): 535-545.
- Van Noortwijk, J. M. (2009). "A survey of the application of gamma processes in maintenance." Reliability Engineering & System Safety 94(1): 2-21.
- Wang, D., Tan D., and Liu, L. (2018). "Particle swarm optimization algorithm an overview." Springer-Verlag Berlin Heidelberg. Soft Comput 22: 387-408.
- Wang, X. (2009). "Nonparametric estimation of the shape function in a Gamma process for degradation data." Canadian Journal of Statistics 37(1): 102118.
- Yang, X. S. (2014). "Cuckoo Search and Firefly Algorithm Theory and Applications." Springer International Publishing Switzerland.
- Yang, X. S. (2015). "Recent Advances in Swarm Intelligence and Evolutionary Computation." Springer International Publishing Switzerland.
- Yang, X., S (2008). "Nature-Inspired Metaheuristic Algorithms." Luniver Press, UK.
- Zhou, J., Z. Pan, Member, IAENG and Q. Sun (2010). "Bivariate Degradation Modeling Based on Gamma Process." Proceedings of the World Congress on Engineering , London, U.K. 3.