Flexible Parametric Survival Model for Analysing Censored Time-To-Event Data Among Tuberculosis Patients.
Abstract
Tuberculosis (TB) is a globally deadly infectious disease responsible for 10 million new cases and 1.5 million deaths annually. Shorter TB treatment regimens show promise in reducing this problem, but there is an improved treatment success rate in South Africa, while retreatment cases remain a concern. An important feature of time-to-event modelling is its ability to consider transition probabilities of heterogeneous subgroups with different risk profiles. Survival analysis is generally performed to accurately estimate the transition probabilities associated with the risk profiles. This study explored the application of a flexible parametric survival model for analysing censored time-to-event data among TB patients.The data were obtained from East London Central Clinic-TB unit, Eastern Cape, South Africa. In total, 174 patients were included in the analysis. The goodness of fit of the models was explored using Akaike information criterion (AIC). We estimated the hazard ratios (HR) and baseline cumulative hazards of our model, which are necessary to calculate individual transition probabilities, and compared the model with the Cox model and additive hazard model to determine the survival predictions of TB patients.The flexible parametric survival model produced hazard ratio and baseline cumulative hazard estimates that were similar to those obtained using the Cox proportional hazards model. The analysis revealed that sex (HR=0.49, 95% CI: 0.38, 0.62), antiretroviral therapy (ART), (HR=0.53, 95% CI: 0.34, 0.78), and diabetes (HR=0.58, 95% CI: 0.41, 0.78) were all statistically significant factors associated with improved treatment survival in tuberculosis patients.Flexible parametric survival models are a powerful tool for modelling time-to-event data and individual transition probabilities. It is of great importance to fit models by modelling the baseline, which makes it easier to make different types of predictions and allows for non-proportional hazards since it is an interaction.
References
- Abdool Karim, S.S., Naidoo, K., Grobler, A., Padayatchi, N., Baxter, C., Gray, A., Gengiah, T., Nair, G., Bamber, S., Singh, A. and Khan, M., (2010). Timing of initiation of antiretroviral drugs during tuberculosis therapy. New England Journal of Medicine, 362(8), pp.697-706.
- Abidi, S., Achar, J., Neino, M.M.A., Bang, D., Benedetti, A., Brode, S., Campbell, J.R., Casas, E.C., Conradie, F., Dravniece, G. and du Cros, P., (2020). Standardised shorter regimens versus individualised longer regimens for rifampin-or multidrug-resistant tuberculosis. European Respiratory Journal, 55(3).
- Andersson, T. M., Dickman, P. W., Eloranta, S., & Lambert, P. C. (2011). Estimating and modelling cure in population-based cancer studies within the framework of flexible parametric survival models. BMC medical research methodology, 11, 1-11.
- Araia, Z.Z., Mesfin, A.B., Mebrahtu, A.H., Tewelde, A.G., Osman, R. and Tuumzghi, H.A., (2021). Diabetes mellitus and its associated factors in tuberculosis patients in maekel region, eritrea: analytical cross-sectional study. Diabetes, Metabolic Syndrome and Obesity, pp.515-523.
- Batyrbekova, N., Bower, H., Dickman, P.W., Ravn Landtblom, A., Hultcrantz, M., Szulkin, R., Lambert, P.C. and Andersson, T.M., (2022). Modelling multiple time-scales with flexible parametric survival models. BMC medical research methodology, 22(1), p.290.
- Bisson, G., Bastos, M., Campbell, J.R., Bang, D., Brust, J.C., Isaakadis, P., Lange, C., Menzies, D., Migliori, G.B., Pape, J.W. and Palmero, D., (2020). Mortality in Adults with MDR-TB and HIV by ART and TB Drug Use: Individual Patient Data Meta-Analysis.
- Bower, H., Crowther, M.J. and Lambert, P.C., (2016). strcs: A command for fitting flexible parametric survival models on the log-hazard scale. The Stata Journal, 16(4), pp.989-1012.
- Burke, K., Jones, M. C., & Noufaily, A. (2020). A flexible parametric modelling framework for survival analysis. Journal of the Royal Statistical Society Series C: Applied Statistics, 69(2), 429-457.
- Churchyard, G.J., Mametja, L.D., Mvusi, L., Ndjeka, N., Pillay, Y., Hesseling, A.C., Reid, A. and Babatunde, S., (2014). Tuberculosis control in South Africa: successes, challenges and recommendations: tuberculosis control-Progress towards the Millennium Development Goals. South African Medical Journal, 104(3), pp.244-248.
- Claassens, M.M., Du Toit, E., Dunbar, R., Lombard, C., Enarson, D.A., Beyers, N. and Borgdorff, M.W., (2013). Tuberculosis patients in primary care do not start treatment. What role do health system delays play?. The International Journal of Tuberculosis and Lung Disease, 17(5), pp.603-607.
- Cox, D. R. (1972). Regression models and lifetables. Journal of the Royal Statistical Society: Series B (Methodological), 34(2), 187-202.
- Dangisso, M. H., Datiko, D. G., & Lindtjrn, B. (2014). Trends of tuberculosis case notification and treatment outcomes in the Sidama Zone, southern Ethiopia: ten-year retrospective trend analysis in urban-rural settings. PloS one, 9(12), e114225.
- Dent, R., Valentini, A., Hanna, W., Rawlinson, E., Rakovitch, E., Sun, P., & Narod, S. A. (2014). Factors associated with breast cancer mortality after local recurrence. Current oncology, 21(3), 418-425.
- Du, X., Li, M., Zhu, P., Wang, J., Hou, L., Li, J., Meng, H., Zhou, M. and Zhu, C., (2018). Comparison of the flexible parametric survival model and Cox model in estimating Markov transition probabilities using real-world data. PLoS One, 13(8), p.e0200807.
- Fufa, D. B., Diriba, T. A., Dame, K. T., & Debusho, L. K. (2023). Competing risk models to evaluate the factors for time to loss to follow-up among tuberculosis patients at Ambo General Hospital. Archives of Public Health, 81(1), 117.
- Fwoloshi, S., Hachaambwa, L. M., Chiyeu, K. O., Chirwa, L., Hoffman, T. W., Ngalamika, O., & Bailey, S. L. (2018). Screening for diabetes mellitus among tuberculosis patients: findings from a study at a Tertiary Hospital in Lusaka, Zambia. Canadian Journal of Infectious Diseases and Medical Microbiology, 2018(1), 3524926.
- Gatechompol, S., Kawkitinarong, K., Suwanpimolkul, G., Kateruttanakul, P., Manosuthi, W., Sophonphan, J., siwimol Ubolyam, S., Kerr, S.J., Avihingsanon, A. and Ruxrungtham, K., (2019). Treatment outcomes and factors associated with mortality among individuals with both TB and HIV in the antiretroviral era in Thailand. Journal of Virus Eradication, 5(4), pp.225-230.
- Gupta, M., Srikrishna, G., Klein, S. L., & Bishai, W. R. (2022). Genetic and hormonal mechanisms underlying sex-specific immune responses in tuberculosis. Trends in immunology, 43(8), 640-656.
- Harries, A. D., Kumar, A. M., Kyaw, N. T. T., Hoa, N. B., Takarinda, K. C., & Zachariah, R. (2016). The role of antiretroviral therapy in reducing TB incidence and mortality in high HIV-TB burden countries. Asian Pacific journal of tropical disease, 6(3), 243-247.
- Hinchliffe, S. R., Scott, D. A., & Lambert, P. C. (2013). Flexible parametric illness-death models. The Stata Journal, 13(4), 759-775.
- Holford, T. R. (1983). The estimation of age, period and cohort effects for vital rates. Biometrics, 311-324.
- Huber, F.G., Kristensen, K.L., Holden, I.K., Andersen, P.H., Bakir, B., Jrgensen, A., Lorentsson, H.J.N., Bjorn-Mortensen, K., Johansen, I.S. and Ravn, P., (2022). The prevalence of diabetes among tuberculosis patients in Denmark. BMC Infectious Diseases, 22(1), p.64.
- Kaplan, R., Hermans, S., Caldwell, J., Jennings, K., Bekker, L. G., & Wood, R. (2018). HIV and TB co-infection in the ART era: CD4 count distributions and TB case fatality in Cape Town. BMC infectious diseases, 18, 1-9.
- Khalil, N. H., & Ramadan, R. A. (2016). Study of risk factors for pulmonary tuberculosis among diabetes mellitus patients. Egyptian Journal of Chest Diseases and Tuberculosis, 65(4), 817-823.
- Li, J., Fine, J. and Brookhart, A., (2015). Instrumental variable additive hazards models. Biometrics, 71(1), pp.122-130.
- Lumu, I., Musaazi, J., Semeere, A., Handel, I., & Castelnuovo, B. (2023). Survival and predictors of mortality after completion of TB treatment among people living with HIV: a 5-year analytical cohort. BMC infectious diseases, 23(1), 238.
- Masini, E.O., Mansour, O., Speer, C.E., Addona, V., Hanson, C.L., Sitienei, J.K., Kipruto, H.K., Githiomi, M.M. and Mungai, B.N., (2016). Using survival analysis to identify risk factors for treatment interruption among new and retreatment tuberculosis patients in Kenya. PloS one, 11(10), p.e0164172.
- Michael, V. A., & Bolarinwa, I. A. (2020). Parametric survival modeling of Tuberculosis data-A case study of Federal Medical Centre, Bida, Nigeria. Modern Applied Science, 14(7), 1-37.
- Ndjeka, N., Campbell, J.R., Meintjes, G., Maartens, G., Schaaf, H.S., Hughes, J., Padanilam, X., Reuter, A., Romero, R., Ismail, F. and Enwerem, M., (2022). Treatment outcomes 24 months after initiating short, all-oral bedaquiline-containing or injectable-containing rifampicin-resistant tuberculosis treatment regimens in South Africa: a retrospective cohort study. The Lancet Infectious Diseases, 22(7), pp.1042-1051.
- Nhamoyebonde, S., & Leslie, A. (2014). Biological differences between the sexes and susceptibility to tuberculosis. The Journal of infectious diseases, S100-S106.
- Royston, P. and Parmar, M.K., (2002). Flexible parametric proportionalhazards and proportionalodds models for censored survival data, with application to prognostic modelling and estimation of treatment effects. Statistics in medicine, 21(15), pp.2175-2197.
- Royston, P., & Lambert, P. C. (2011). Flexible parametric survival analysis using Stata: beyond the Cox model (Vol. 347). College Station, TX: Stata press.
- Rutherford, M. J., Crowther, M. J., & Lambert, P. C. (2015). The use of restricted cubic splines to approximate complex hazard functions in the analysis of time-to-event data: a simulation study. Journal of Statistical Computation and Simulation, 85(4), 777-793.
- Schnippel, K., Ndjeka, N., Maartens, G., Meintjes, G., Master, I., Ismail, N., Hughes, J., Ferreira, H., Padanilam, X., Romero, R. and Te Riele, J., (2018). Effect of bedaquiline on mortality in South African patients with drug-resistant tuberculosis: a retrospective cohort study.The lancet respiratory medicine,6(9), pp.699-706.
- Tenaye, L., Mengiste, B., Baraki, N., & Mulu, E. (2019). Diabetes mellitus among adult tuberculosis patients attending tuberculosis clinics in Eastern Ethiopia. BioMed Research International, 2019(1), 7640836.
- Walker, I.F., Shi, O., Hicks, J.P., Elsey, H., Wei, X., Menzies, D., Lan, Z., Falzon, D., Migliori, G.B., Prez-Guzmn, C. and Vargas, M.H., (2019). Analysis of loss to follow-up in 4099 multidrug-resistant pulmonary tuberculosis patients.European Respiratory Journal,54(1).
- World Health Organization (WHO), Tuberculosis-Health Topics. Accessed: Sep. 18, 2023. [Online]. Available: https://www.who.int/health-topics/tuberculosis
- Yan, I., Bendavid, E., & Korenromp, E. L. (2016). Antiretroviral treatment scale-up and tuberculosis mortality in high TB/HIV burden countries: an econometric analysis. PLoS One, 11(8), e0160481.
- Yoo, J. E., Kim, D., Han, K., Rhee, S. Y., Shin, D. W., & Lee, H. (2021). Diabetes status and association with risk of tuberculosis among Korean adults. JAMA network open, 4(9), e2126099-e2126099.