In-situ Gelling System: A Promising Delivery Method for Treating Periodontitis

Section: Review Paper
Published
Sep 1, 2024
Pages
89-101

Abstract

Background: Periodontitis is a chronic and potentially severe inflammatory disease that can affect both men and women. It is caused by various factors such as inadequate oral health, stress, consumption of alcoholic beverages, cigarette smoking, food, some immunity-related diseases, and chronic diseases. If left untreated, these disorders can ultimately contribute to missing teeth and other mouth diseases. Various delivery systems like fibers, stripes, films, and microparticulate systems are available to treat periodontitis. In-situ drug delivery systems use stimuli-sensitive polymers that undergo a solution-to-gel phase transition, which enables them to cover the entire pocket. As a result, they are more effective in treating periodontitis than other delivery systems. Aim: Provide an overview of periodontitis, its therapies, and how an in-situ gelling system can treat it effectively and safely. Methods: To achieve this aim, an extensive systematic search was done in different databases, including Science Direct, Springer, PubMed, ResearchGate, and Google Scholar, so manyof the relatedpriorresearchwerereviewed. Conclusion: In-situ gelling systems are encouraging drug delivery systems for treating periodontitis. because of their ability to deliver drugs at the site of infection while decreasing the possibility of side effects. These systems containing biocompatible, biodegradable, and water-soluble polymers have promising results in improving the treatment of periodontitis.

References

  1. Agossa K, Lizambard M, Rongthong T, Delcourt-Debruyne E, Siepmann J, Siepmann F. Physical key properties of antibiotic-free, PLGA/HPMC-based in-situ forming implants for local periodontitis treatment. International Journal of Pharmaceutics. 2017;521(1-2):282-293.
  2. Agrawal M, Saraf S, Saraf S, et al. Stimuli-responsive In situ gelling system for nose-to-brain drug delivery. Journal of Controlled Release. 2020;327(July):235-265.
  3. Akash MSH, Rehman K, Sun H, Chen S. Assessment of release kinetics, stability and polymer interaction of poloxamer 407-based thermosensitive gel of interleukin-1 receptor antagonist. Pharmaceutical Development and Technology. 2014;19(3):278-284.
  4. Alabdly AA, Kassab HJ. Formulation variables effect on gelation temperature of nefopam hydrochloride intranasal in situ gel. Iraqi Journal of Pharmaceutical Sciences. 2022;31(February):32-44.
  5. Alabdly AA, Kassab HJ. Rheological characterization, In vitro release, and Ex vivo permeation of Nefopam Thermosensitive and mucoadhesive intranasal in situ gel. Journal of Pharmaceutical Negative Results. 2022;13(3).
  6. Aminu N, Chan SY, Yam MF, Toh SM. A dual-action chitosan-based nanogel system of triclosan and flurbiprofen for localised treatment of periodontitis. International Journal of Pharmaceutics. 2019;570(August).
  7. Ashfaq R, Sisa B, Kovcs A, et al. Factorial design of in situ gelling two-compartment systems containing chlorhexidine for the treatment of periodontitis. European Journal of Pharmaceutical Sciences. 2023;191(May).
  8. Audhkhasi K, Kingsbury B, Ramabhadran B, Saon G, Picheny M. In situ gels - a new trends in ophthalmic drug delivery systems. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings. 2018;2018-April(05):4759-4763.
  9. Bansal M, Mittal N, Yadav SK, et al. Periodontal thermoresponsive, mucoadhesive dual antimicrobial loaded in-situ gel for the treatment of periodontal disease: Preparation, in-vitro characterization and antimicrobial study. Journal of Oral Biology and Craniofacial Research. 2018;8(2):126-133.
  10. Bashir R. An In sight into Novel Drug Delivery System In Situ Gels. CellMed Orthocellular Medicine Pharmaceutical Association. 2021;11(1).
  11. Benet LZ, Broccatelli F, Oprea TI. BDDCS applied to over 900 drugs. AAPS Journal. 2011;13(4):519-547.
  12. Berio F, Debiais-Thibaud M. Evolutionary developmental genetics of teeth and odontodes in jawed vertebrates: a perspective from the study of elasmobranchs. Journal of Fish Biology. 2021;98(4):906-918.
  13. Bialik M, Kuras M, Sobczak M, Oledzka E. Achievements in thermosensitive gelling systems for rectal administration. International Journal of Molecular Sciences. 2021;22(11).
  14. Boeckx WD, Ph D. Role of metronidazole as a local drug delivery in the treatment of periodontitis:a review. 2006;59(July):64-67.
  15. Boutris C, Chatzi E, Kiparissides C. Characterization of the LCST behavior of aqueous poly(N-isopropylacrylamide) solutions by thermal and cloud point techniques. Polymer. 1997;38:2567-2570.
  16. Brady J, Drig T, Lee PI, Li JX. Polymer Properties and Characterization.; 2017.
  17. Braun S. Encapsulation of Cells (Cellular Delivery) Using Sol-Gel Systems. Vol 4. Elsevier Ltd.; 2011.
  18. Carvalho GC, Araujo VHS, Fonseca-Santos B, et al. Highlights in poloxamer-based drug delivery systems as strategy at local application for vaginal infections. International Journal of Pharmaceutics. 2021;602(April).
  19. Chakrabarty S, Nath B. Oral in-situ gel for periodontitis: a review. Chakrabarty et al World Journal of Pharmaceutical Research. 2018;7(11):262.
  20. Chaudhary B, Verma S. Preparation and evaluation of novel in situ gels containing acyclovir for the treatment of oral herpes simplex virus infections. The Scientific World Journal. 2014;2014.
  21. Chen Y, Lee JH, Meng M, et al. An overview on thermosensitive oral gel based on poloxamer 407. Materials. 2021;14(16).
  22. Chichiricco PM, Riva R, Thomassin JM, et al. In situ photochemical crosslinking of hydrogel membrane for Guided Tissue Regeneration. Dental Materials. 2018;34(12):1769-1782.
  23. Chowhan A, Giri TK. Polysaccharide as renewable responsive biopolymer for in situ gel in the delivery of drug through ocular route. International Journal of Biological Macromolecules. 2020;150:559-572.
  24. Cole MA, Voelcker NH, Thissen H, Griesser HJ. Stimuli-responsive interfaces and systems for the control of protein-surface and cell-surface interactions. Biomaterials. 2009;30(9):1827-1850.
  25. Commission BP, Britain) SO (Great. British Pharmacopoeia 2016. Stationery Office London; 2015.
  26. Cosgarea R, Ramseier CA, Jepsen S, et al. One-year clinical, microbiological and immunological results of local doxycycline or antimicrobial photodynamic therapy for recurrent/persisting periodontal pockets: a randomized clinical trial. Antibiotics. 2022;11(6):1-13.
  27. Das M, Giri TK. Hydrogels based on gellan gum in cell delivery and drug delivery. Journal of Drug Delivery Science and Technology. 2020;56:101586.
  28. de Castro KC, Coco JC, dos Santos M, et al. Pluronic triblock copolymer-based nanoformulations for cancer therapy: A 10-year overview. Journal of Controlled Release. 2023;353:802-822.
  29. Dean KE. A radiologists guide to teeth: An imaging review of dental anatomy, nomenclature, trauma, infection, and tumors. Neurographics. 2020;10(5-6):302-318.
  30. Deshmukh K, Basheer Ahamed M, Deshmukh RR, Khadheer Pasha SK, Bhagat PR, Chidambaram K. Biopolymer Composites with High Dielectric Performance: Interface Engineering. Elsevier Inc.; 2017.
  31. Dewhirst FE, Chen T, Izard J, et al. The human oral microbiome. Journal of Bacteriology. 2010;192(19):5002-5017.
  32. Europe C of, Commission EP, Healthcare ED for the Q of M&. European Pharmacopoeia. 7th ed. Council Of Europe: European Directorate for the Quality of Medicines and Healthcare Strasbourg
  33. Fakhari A, Corcoran M, Schwarz A. Thermogelling properties of purified poloxamer 407. Heliyon. 2017;3(8):e00390.
  34. Fernandes T, Bhavsar C, Sawarkar S, Dsouza A. Current and novel approaches for control of dental biofilm. International Journal of Pharmaceutics. 2018;536(1):199-210.
  35. Gao M, Shen X, Mao S. Factors influencing drug deposition in the nasal cavity upon delivery via nasal sprays. Journal of Pharmaceutical Investigation. 2020;50(3):251-259.
  36. Gao Y, Li Z, Huang J, Zhao M, Wu J. In situ formation of injectable hydrogels for chronic wound healing. Journal of Materials Chemistry B. 2020;8(38):8768-8780.
  37. Garg A, Agrawal R, Singh Chauhan C, Deshmukh R. In-situ gel: A smart carrier for drug delivery. International Journal of Pharmaceutics. 2024;652:123819.
  38. George K, Kang S, George T. United states patent. 1983;(19).
  39. Gil ES, Hudson SM. Stimuli-reponsive polymers and their bioconjugates. Progress in Polymer Science (Oxford). 2004;29(12):1173-1222.
  40. Giuliano E, Paolino D, Fresta M, Cosco D. Mucosal applications of poloxamer 407-based hydrogels: An overview. Pharmaceutics. 2018;10(3):1-26.
  41. H.R. R, Dhamecha D, Jagwani S, et al. Local drug delivery systems in the management of periodontitis: A scientific review. Journal of Controlled Release. 2019;307(April):393-409.
  42. Iacob AT, Lupascu FG, Apotrosoaei M, et al. Recent biomedical approaches for chitosan based materials as drug delivery nanocarriers. Pharmaceutics. 2021;13(4):1-36.
  43. Irimia T, Dinu-Prvu CE, Ghica MV, et al. Chitosan-based in situ gels for ocular delivery of therapeutics: A state-of-the-art review. Marine Drugs. 2018;16(10).
  44. Jagur-Grodzinski J. Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polymers for Advanced Technologies. 2010;21(1):27-47.
  45. Jain P, Hassan N, Khatoon K, et al. Periodontitis and systemic disorderan overview of relation and novel treatment modalities. Pharmaceutics. 2021;13(8):1-23.
  46. Joshi D, Garg T, Goyal AK, Rath G. Advanced drug delivery approaches against periodontitis. Drug Delivery. 2016;23(2):363-377.
  47. Khule MR, Vyavahare SB. A Review: in-situ gel drug delivery system. International Journal of All Research Education and Scientific Methods (IJARESM),. 2021;9(3):2455-6211.
  48. Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nature Reviews Disease Primers. 2017;3:1-14.
  49. Konatham M, Gorle MT, Pathakala N, et al. In situ gel polymers: A review. International Journal of Applied Pharmaceutics. 2021;13(1):86-90.
  50. Knnen E, Gursoy M, Gursoy UK. Periodontitis: A multifaceted disease of tooth-supporting tissues. Journal of Clinical Medicine. 2019;8(8).
  51. Kulkarni AP, Aslam Khan SK, Dehghan MH. Evaluation of polaxomer-based in situ gelling system of articaine as a drug delivery system for anesthetizing periodontal pockets An in vitro study. Indian Journal of Dentistry. 2012;3(4):201-208.
  52. Liu Q. Treatment of various stages of periodontitis and prevention of periodontitis. Highlights in Science, Engineering, and Technology. 2023;45:219-226.
  53. M. MADAN, A. BAJAJ, S. LEWIS1 NU. In situ forming polymeric drug delivery systems. Encyclopedia of Chromatography, Third Edition (Print Version). 2009;(June).
  54. Malpartida-Carrillo V, Tinedo-Lopez PL, Guerrero ME, Amaya-Pajares SP, zcan M, Rsing CK. Periodontal phenotype: A review of historical and current classifications evaluating different methods and characteristics. Journal of Esthetic and Restorative Dentistry. 2021;33(3):432-445.
  55. Mao R, Tang J, Swanson BG. Texture properties of high and low acyl mixed gellan gels. Carbohydrate Polymers. 2000;41(4):331-338.
  56. Mei L, Huang X, Xie Y, et al. An injectable in situ gel with cubic and hexagonal nanostructures for local treatment of chronic periodontitis. Drug Delivery. 2017;24(1):1148-1158.
  57. Mignani S, Shi X, Karpus A, Majoral JP. Non-invasive intranasal administration route directly to the brain using dendrimer nanoplatforms: An opportunity to develop new CNS drugs. European Journal of Medicinal Chemistry. 2021;209(xxxx):112905.
  58. Min KH, Jang EY, Lee HJ, et al. PH-responsive mineralized nanoparticles for bacteria-triggered topical release of antibiotics. Journal of Industrial and Engineering Chemistry. 2019;71:210-219.
  59. Moghimi SM, Hunter AC, Dadswell CM, Savay S, Alving CR, Szebeni J. Causative factors behind poloxamer 188 (Pluronic F68, FlocorTM)- induced complement activation in human sera. A protective role against poloxamer-mediated complement activation by elevated serum lipoprotein levels. Biochimica et Biophysica Acta - Molecular Basis of Disease. 2004;1689(2):103-113.
  60. More PK, Saudagar RB, Gondkar SB. Nasal in-situ gel: a novel approach for nasal drug delivery system. World Journal of Pharmaceutical Research World Journal of Pharmaceutical Research SJIF Impact Factor 5. 2015;4(2):686-708. www.wjpr.net
  61. Musmade N, Jadhav A, Moin P, Patil S, Gupta A. An overview of in situ gel forming implants: current approach towards alternative drug delivery system. Journal of Biological and chemical Chronicles. 2019;5(1):14-21.
  62. N asra MMA, Khiri HM, Hazzah HA, Abdallah OY. Formulation, in-vitro characterization and clinical evaluation of curcumin in-situ gel for treatment of periodontitis. Drug Delivery. 2017;24(1):133-142.
  63. Nasiri K, Masoumi SM, Amini S, et al. Recent advances in metal nanoparticles to treat periodontitis. Journal of Nanobiotechnology. 2023;21(1):1-30.
  64. Obaidat A, Altamimi R, Hammad M. Formulation and release of doxycycline HCL from an ion activated in situ gelling delivery system for the treatment of periodontal disease. Journal of Applied Polymer Science. 2010;115:811-816.
  65. Orlandi M, Muoz Aguilera E, Marletta D, Petrie A, Suvan J, DAiuto F. Impact of the treatment of periodontitis on systemic health and quality of life: A systematic review. Journal of Clinical Periodontology. 2022;49(S24):314-327.
  66. Pandey M, Choudhury H, Abdul-Aziz A, et al. Promising drug delivery approaches to treat microbial infections in the vagina: A recent update. Polymers. 2021;23(1):1-65.
  67. Pandey M, Choudhury H, Aziz ABA, et al. Potential of stimuli-responsive in situ gel system for sustained ocular drug delivery: Recent progress and contemporary research. Polymers. 2021;13(8).
  68. Patel KS, Vadalia KR, Patel JK. Development and evaluation of in situ gelling system for treatment of periodontitis. International Journal of PharmTech Research. 2014;6(7):2102-2112.
  69. Peers S, Montembault A, Ladavire C. Chitosan hydrogels for sustained drug delivery. Journal of Controlled Release. 2020;326:150-163.
  70. Phaechamud T, Chanyaboonsub N, Setthajindalert O. Doxycycline hyclate-loaded bleached shellac in situ forming microparticle for intraperiodontal pocket local delivery. European Journal of Pharmaceutical Sciences. 2016;93:360-370.
  71. Phaechamud T, Lertsuphotvanit N, Praphanwittaya P. Viscoelastic and thermal properties of doxycycline hyclate-loaded bleached shellac in situ-forming gel and microparticle. Journal of Drug Delivery Science and Technology. 2018;44(January):448-456.
  72. Phaechamud T, Senarat S, Puyathorn N, Praphanwittaya P. Solvent exchange and drug release characteristics of doxycycline hyclate-loaded bleached shellac in situ-forming gel and -microparticle. International Journal of Biological Macromolecules. 2019;135:1261-1272.
  73. Phaechamud T, Setthajindalert O. Antimicrobial in-situ forming gels based on bleached shellac and different solvents. Journal of Drug Delivery Science and Technology. 2018;46(May):285-293.
  74. Phaechamud T, Thurein SM, Chantadee T. Role of clove oil in solvent exchange-induced doxycycline hyclate-loaded Eudragit RS in situ forming gel. Asian Journal of Pharmaceutical Sciences. 2018;13(2):131-142.
  75. Pindobilowo, Umi Ghoni Tjiptoningsih, Dwi Ariani. Effective tooth brushing techniques based on periodontal tissue conditions: a narrative review. Formosa Journal of Applied Sciences. 2023;2(7):1649-1662.
  76. Priyanka M, Meenakshi B. Study of secnidazole-serratiopeptidase alginate/HPMC gels for periodontal delivery. International Journal of PharmTech Research. 2011;3(3):1488-1494.
  77. Rajendran S, Kumar Ks, Ramesh S, Rao S. Thermoreversible in situ gel for subgingival delivery of simvastatin for treatment of periodontal disease. International Journal of Pharmaceutical Investigation. 2017;7(2):101.
  78. Rajendran S, Mahendra J, Srinivasan S, Namasivayam A. Assessment of glycemic index in diabetic and chronic periodontitis patients with SRP as an intervention: a cross-sectional study. World Journal of Dentistry. 2023;14(2):128-135.
  79. Revilla-Len M, Gmez-Polo M, Barmak AB, et al. Artificial intelligence models for diagnosing gingivitis and periodontal disease: A systematic review. Journal of Prosthetic Dentistry. 2023;130(6):816-824.
  80. Rowiska I, Szyperska-laska A, Zariczny P, Pasawski R, Kramkowski K, Kowalczyk P. The influence of diet on oxidative stress and inflammation induced by bacterial biofilms in the human oral cavity. Materials. 2021;14(6).
  81. Ruan H, Yu Y, Liu Y, Ding X, Guo X, Jiang Q. Preparation and characteristics of thermoresponsive gel of minocycline hydrochloride and evaluation of its effect on experimental periodontitis models. Drug Delivery. 2016;23(2):525-531.
  82. Ruel-Garipy E, Leroux JC. In situ-forming hydrogels - Review of temperature-sensitive systems. European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fr Pharmazeutische Verfahrenstechnik eV. 2004;58:409-426.
  83. Russo E, Villa C. Poloxamer hydrogels for biomedical applications. Pharmaceutics. 2019;11(12):1-17.
  84. Sahoo S, Chakraborti C, Mishra S. Qualitative analysis of controlled release ciprofloxacin/carbopol 934 mucoadhesive suspension. Journal of Advanced Pharmaceutical Technology & Research. 2011;2(3):195.
  85. Saita M, Kaneko J, Sato T, et al. Novel antioxidative nanotherapeutics in a rat periodontitis model: Reactive oxygen species scavenging by redox injectable gel suppresses alveolar bone resorption. Biomaterials. 2016;76:292-301.
  86. Sansores-Espaa D, Carrillo-Avila A, Melgar-Rodriguez S, Daz-Zuiga J, Martnez-Aguilar V. Periodontitis and alzheimers disease. Medicina Oral Patologia Oral y Cirugia Bucal. 2021;26(1):e43-e48.
  87. Scarpa M, Stegemann S, Hsiao WK, et al. Orodispersible films: towards drug delivery in special populations. International Journal of Pharmaceutics. 2017;523(1):327-335.
  88. Schenkein HA, Papapanou PN, Genco R, Sanz M. Mechanisms underlying the association between periodontitis and atherosclerotic disease. Periodontology 2000. 2020;83(1):90-106.
  89. Schwach-Abdellaoui K, Vivien-Castioni N, Gurny R. Local delivery of antimicrobial agents for the treatment of periodontal diseases. European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2000;50(1):83-99.
  90. Sheshala R, Quah SY, Tan GC, Meka VS, Jnanendrappa N, Sahu PS. Investigation on solution-to-gel characteristic of thermosensitive and mucoadhesive biopolymers for the development of moxifloxacin-loaded sustained release periodontal in situ gels. Drug Delivery and Translational Research. 2019;9(2):434-443.
  91. Singh J, Nayak P. PH-responsive polymers for drug delivery: Trends and opportunities. Journal of Polymer Science. 2023;61(22):2828-2850.
  92. Singh M, Dev D, Prasad DN. A recent overview: in situ gel smart carriers for ocular drug delivery. Journal of Drug Delivery and Therapeutics. 2021;11(6-S):195-205.
  93. Soniya R D, Dev A, Rathod S, Deshmukh G. An overview of in situ gelling systems. Pharmaceutical and Biological Evaluations. 2016;3(1):60-69. www.onlinepbe.com
  94. Sultana A, Zare M, Thomas V, Kumar TSS, Ramakrishna S. Nano-based drug delivery systems: Conventional drug delivery routes, recent developments and future prospects. Medicine in Drug Discovery. 2022;15(February):100134.
  95. Sumanth H. Liquid oral floating in situ gels: a review. Asian Journal of Pharmaceutics. 2023;17(2):163-172.
  96. Swain GP, Patel S, Gandhi J, Shah P. Development of moxifloxacin hydrochloride loaded in-situ gel for the treatment of periodontitis: In-vitro drug release study and antibacterial activity. Journal of Oral Biology and Craniofacial Research. 2019;9(3):190-200.
  97. Sworn G. Handbook of Hydrocolloids. In: Phillips GO, Williams PABTH of H (Second E, eds. Woodhead Publishing Series in Food Science, Technology and Nutrition. Woodhead Publishing; 2009:204-227.
  98. Telgote A, Udapurkar PP. Journal of drug delivery and biotherapeutics An overview treatment and prevention of toothache. Published online 2024.
  99. Teotia AK, Sami H, Kumar A. Thermo-Responsive Polymers: Structure and Design of Smart Materials. Elsevier Ltd; 2015.
  100. Vigani B, Rossi S, Sandri G, Bonferoni MC, Caramella CM, Ferrari F. Recent advances in the development of in situ gelling drug delivery systems for non-parenteral administration routes. Pharmaceutics. 2020;12(9):1-29.
  101. VYAS U, GEHALOT N, JAIN V, MAHAJAN SC. In situ gelling drug delivery systems - a review on recent developments. Current Research in Pharmaceutical Sciences. 2022;11(4):98-106.
  102. Wang D, Dai L, Cui Z, et al. Association between periodontal diseases and chronic obstructive pulmonary disease: Evidence from sequential cross-sectional and prospective cohort studies based on UK Biobank. Journal of Clinical Periodontology. 2024;51(1):97-107.
  103. Wang X, Burgess DJ. Drug release from in situ forming implants and advances in release testing. Advanced Drug Delivery Reviews. 2021;178(xxxx):113912.
  104. Wang Y, Li J, Tang M, et al. Smart stimuli-responsive hydrogels for drug delivery in periodontitis treatment. Biomedicine and Pharmacotherapy. 2023;162(March):114688.
  105. Wu Y, Liu Y, Li X, et al. Research progress of in-situ gelling ophthalmic drug delivery system. Asian Journal of Pharmaceutical Sciences. 2019;14(1):1-15.
  106. Yadav R, Kanwar IL, Haider T, Pandey V, Gour V, Soni V. In situ gel drug delivery system for periodontitis: an insight review. Future Journal of Pharmaceutical Sciences. 2020;6(1).
  107. Yadav S, Ahuja M, Kumar A, Kaur H. Gellan-thioglycolic acid conjugate: Synthesis, characterization and evaluation as mucoadhesive polymer. Carbohydrate Polymers. 2014;99:601-607.
  108. Yadav SK, Khan G, Bansal M, et al. Multiparticulate based thermosensitive intra-pocket forming implants for better treatment of bacterial infections in periodontitis. International Journal of Biological Macromolecules. 2018;116:394-408.
  109. Yan L, Zhu Q, Kenkare P. Lower critical solution temperature of linear PNIPA obtained from a Yukawa potential of polymer chains. Journal of Applied Polymer Science. 2000;78:1971-1976.
  110. Yassir Al-Bazzaz F, Al-Kotaji M. Ophthalmic in-situ sustained gel of ciprofloxacin, preparation and evaluation study. International Journal of Applied Pharmaceutics. 2018;10(4):153-161.
  111. Zhao H, Hu J, Zhao L. Adjunctive subgingival application of Chlorhexidine gel in nonsurgical periodontal treatment for chronic periodontitis: A systematic review and meta-analysis. BMC Oral Health. 2020;20(1):1-12.
  112. Zhao P, Chen W, Feng Z, et al. Electrospun nanofibers for periodontal treatment: a recent progress. International Journal of Nanomedicine. 2022;17(August):4137-4162.

Identifiers

Download this PDF file

Statistics

How to Cite

A. Hameed, Z., مهند, A. Alfahad, M., عبدالله, Riyadh Al-Dabbagh, A., & زيد. (2024). In-situ Gelling System: A Promising Delivery Method for Treating Periodontitis. Iraqi Journal of Pharmacy, 21(3), 89–101. Retrieved from https://rjps.uomosul.edu.iq/index.php/iphr/article/view/21490