Variable Selection In Logistic Regression Model Using Modified Firefly Algorithms

Section: Research Paper
Published
Jun 25, 2025
Pages
151-159

Abstract

Abstract: The logistic regression model is considered the most widely used in many applications, and it is one of the main models in the family of generalized linear models. Like other regression models, the model may contain many independent variables, which negatively affects the accuracy of the model and its simplicity in interpreting the results. This study aims to use the modified firefly algorithm and compare it with other methods for selecting variables in an exponential regression model using simulation and real data. The results showed that compared to other previously used methods, the proposed method performs better and helps reduce the mean square error of the model..

References

  1. Al-Naimi, Aswan Muhammad Tayyab Rashid, 2005, Testing Variables in Letter Regression, unpublished masters thesis, College of Computer Science and Mathematics, University of Mosul, Iraq.
  2. Alharthi, A. M., Lee, M. H., & Algamal, Z. Y. (2021). Gene selection and classification of microarray gene expression data based on a new adaptive L1-norm elastic net penalty. Informatics in Medicine Unlocked, 24. doi:10.1016/j.imu.2021.100622
  3. Mnsson, K. (2013). Developing a Liu estimator for the negative binomial regression model: method and application. Journal of Statistical Computation and Simulation, 83(9), 1773-1780.
  4. zkale, M. R., & Arcan, E. (2016). A new biased estimator in logistic regression model. Statistics, 1-21. doi:10.1080/02331888.2015.1123711
  5. zkale, M. R., & Arcan, E. (2018). A first-order approximated jackknifed ridge estimator in binary logistic regression. Computational Statistics, 34(2), 683-712. doi:10.1007/s00180-018-0851-6
  6. Steyerberg, E. W., Borsboom, G. J., van Houwelingen, H. C., Eijkemans, M. J., & Habbema, J. D. (2004). Validation and updating of predictive logistic regression models: a study on sample size and shrinkage. Stat Med, 23(16), 2567-2586. doi:10.1002/sim.1844
  7. Varathan, N., & Wijekoon, P. (2018). Liu-Type logistic estimator under Stochastic Linear Restrictions. Ceylon Journal of Science, 47(1). doi:10.4038/cjs.v47i1.7483
  8. Xu, H., Yu, S., Chen, J., & Zuo, X. (2018). An Improved Firefly Algorithm for Feature Selection in Classification. Wireless Personal Communications, 102(4), 2823-2834. doi:10.1007/s11277-018-5309-1
  9. Yang, X.-S. (2010). Nature-inspired metaheuristic algorithms: Luniver press.
  10. Zhang, L., Shan, L., & Wang, J. (2016). Optimal feature selection using distance-based discrete firefly algorithm with mutual information criterion. Neural Computing and Applications, 28(9), 2795-2808. doi:10.1007/s00521-016-2204-0
  11. Zhang, L., Srisukkham, W., Neoh, S. C., Lim, C. P., & Pandit, D. (2018). Classifier ensemble reduction using a modified firefly algorithm: An empirical evaluation. Expert Systems with Applications, 93, 395-422. doi:10.1016/j.eswa.2017.10.001

Identifiers

Download this PDF file

Statistics

How to Cite

Suleiman Dawood, H. (2025). Variable Selection In Logistic Regression Model Using Modified Firefly Algorithms. IRAQI JOURNAL OF STATISTICAL SCIENCES, 21(1), 151–159. Retrieved from https://rjps.uomosul.edu.iq/index.php/stats/article/view/20587