MHD Stagnation-Point Flow of Non-Newtonian Fluid and Heat Transfer over Stretching/Shrinking Sheet in a Porous Medium

Section: Research Paper
Published
Mar 1, 2019
Pages
71-82

Abstract

In this work, we study the stagnation point flow of Casson fluid and heat transfer phenomena in presence of thermal radiation and magnetic field. We used the suitable similarity transformation to reduce governing partial differential equations into ordinary differential equations, these equations are solved numerically using Rang-Kutta method. Effects of non-dimensional parameters on velocity, temperature are discussed and presented through graphs as well as coefficient of skin friction and local Nusselt numbers is investigated stretching/shrinking cases.

References

  1. A. M. Salem and R. Fathy "Effects of variable properties on MHD heat and mass transfer flow near a stagnation point towards a stretching sheet in a porous medium with thermal radiation "Chinese Physics B,Vol.(21), Article ID 054701,(2012).
  2. L. J. Crane "Flow past a stretching plate" Zeitschrift fur Angewandte Mathematik and Physik, Vol.(21),no.4,pp.645-647,(1970).
  3. M. Nakamura and T. Sawada ,"Numerical study on the flow of a non-Newtonian fluid through an axisymmetric stenosis ," , Journal of Biomechanical Engineering ,Vol.(110), no.2, pp.137-143,(1988).
  4. M. Nandeppanavar and J. M. Shilpa," Stagnation point flow of non Newtonian fluid and heat transfer over a stretching /shrinking sheet in a porous medium" Chemical and process engineering research, .Vol.(46),(2016).
  5. M. Q. Brewster " Thermal radiative transfer properties " John Wiley and Sons,(1972).
  6. S. Mukhopadhyay, G. C. Layek and S. A. Samad " Study of MHD
  7. S. Mukhopadhyay and R. S. R. Gorla "Effects of partial slip on
  8. T. Fang and J. Zhang "Closed form exact solutions of MHD viscous flow over a stretching sheet "Communications in Nonlinear Science and Numerical Simulation ,Vol.(197),no.12 , pp.1527-1540,(2010).
  9. Homann f, Der Einfluss grosser Zahigkeit bei der stromung um den
  10. H. I. Andersson "MHD flow of a viscoelastic fluid past a stretching surface" Acta Mechnica,Vol.(95),no.1-4,p.p.227-230 (1992).
  11. J. Ahmed, A. Shahzad , M. Khan and R. Ali " A note on connective heat transfer of an MHD Jeffrey fluid over a stretching sheet", AIP Advances 5, 117117,(2015); doi : 10.1063/1.4935571.
  12. K. Bhattacharyya "Effects of radiation and heat source/sink on unsteady MHD boundary layer flow and heat transfer over a shrinking sheet with suction/injection "Frontiers of Chemical Engineering, Vol.(5),no.(3),pp.376-384,(2011).
  13. K. Bhattacharyya , "MHD stagnation- point flow of Casson fluid and heat transfer over a stretching sheet with thermal radiation " Journal of Thermodynamics, Article ID 169974,(2013).
  14. K. Bhattacharyya and G. C. Layek "Chemically reactive solute distributive in MHD boundary layer flow over a permeable stretching sheet with suction or blowing "Chemical Engineering Communications, Vol.(197),pp.1527-1540,(2010).
  15. K. B. Pavlov, "Magneto hydrodynamic flow of an incompressible viscous fluid caused by the deformation of a plane surface", Magneto hydrodynamics, Vol.(10),pp.146-148,(1974).
  16. K. Bhattacharyya, T. Hayat and A. Alsaedi " Exact solution for boundary layer flow of Casson fluid over a permeable stretching / shrinking sheet." Zeitschrift fur Angewandte Mathematik and Mechanik,(2013).
  17. -4466,(2005).
  18. a presence of thermal Radiation "Heat and mass transfer,Vol.(48),
  19. boundary Layer flow over a heated stretching sheet with variable
  20. boundary layer Flow past a permeable exponential stretching sheet in
  21. pp.1773-1781,(2012).
  22. viscosity" Intr. J. of Heat and Mass Transfer ,Vol. (48),no.21-22,p.p.
  23. Zylinder und um die kugel . Zeitschrift fur Angewandte Mathematik and Mechanik,Vol.(16),pp.153-164,(1936).
Download this PDF file

Statistics

How to Cite

[1]
A. Hammodat, علاء, A. Ihsan Basheer, and أنس, “MHD Stagnation-Point Flow of Non-Newtonian Fluid and Heat Transfer over Stretching/Shrinking Sheet in a Porous Medium”, EDUSJ, vol. 28, no. 1, pp. 71–82, Mar. 2019.