Design of ZnO Nanowire Laser Single Mode and Study Its Properties

Section: Research Paper
Published
Jun 2, 2019
Pages
133-149

Abstract

Designing of single-mode ZnO nanowire laser has been achieved. Studying its properties has also been considered. Analysis of single-mode rate equations indicates that the laser has threshold current of 53 mA, the output power of 30 mW at bias current of 70 mA and the slope efficiency around 1.77 mW/mA for the output power from both mirrors. The critical diameter for nanowire has been calculated and it is found to be 128 nm. The number of nanowire rods through designed area of dimensions (21m21m) has also been calculated. The cavity of nanowire laser is (F-P). The results are compared with some experimental work of ZnO nanowire lasers and good agreement is found.

References

  1. A. Soudi, P. Dhakal and Y. Gu, "Diameter dependence of the minority carrier diffusion length in individual ZnO nanowire," Appl. Phys. Lett., Vol. 96, pp. 253115, (2010).
  2. Abdullah R. A., Khallel E. A. Threshold gain dynamic of blue InGaN laser diode with optical feedback. Optic., 124, 2740-2742 (2013). https://www.researchgate.net/publication/267918178.
  3. Chang S.-W., Lin T.-R., and Chuang S. L. Theory of plasmonic F-P nanolasers. Opt, Express, Vol. 18, 15039-15053, (2010).
  4. Chen C. L. Elements of optoelectronics and fiber optics. Chicago, (1966).
  5. Chena L. and Toweb E. Coupled optoelectronic modeling and simulation of nanowire lasers. Appl. Phys. Lett., Vol. 84, 1067, (2004).
  6. Chu S., Wang G., Zhou W., Lin Y., Chernyak L., Zhao J., Kong J., Li L., Ren J. and Liu J. Electrically pumped waveguide lasing from ZnO nanowire Nature Nanotechnology, Vol. 6, 506-510, (2011).
  7. Couteau C., Larrue A., Wilhelm C., and Soci C. Nanowire lasers. Nanophotonics, Vol. 4, 90-107, (2015).
  8. D. J. Sirbuly, M. Law, H. Yan, and P. Yang," Semiconductor Nanowires for Subwavelength Photonics Integration," J. Phys. Chem. B, Vol. 109,pp. 15190-15213, 2005.
  9. Duan X. F., Huang Y., Agarwal R., and Lieber C. M. Single-nanowire electrically driven lasers. Nature, Vol. 421 , 241-245, (2003).
  10. Foreman J. V., Everitt H. O., Yang J. and Liu J. Influence of temperature and photoexcitation density on the quantum efficiency of defect emission in ZnO powders.Appl. Phys. Lett. 91, 011902-2, (2007).
  11. Gradecak S., Qian F., Li Y., Park H.-G., and Lieber C. M. GaN nanowire lasers with low lasing threshols. Appl. Phys. Lett., Vol. 87, 173111, (2005).
  12. http:/nanowire,Berkeley.edu/wp-content/uploads/2013/01/207_SI.pdf.
  13. Huang M. H., Mao S., Feick H., Yan H. Q., Wu Y. Y., Kind H., Weber E., Russo R., and Yang P. D. Room-temperature ultraviolet nanowire nanolasers Science, Vol. 292, 1897-1899, (2001).
  14. Johnson J. C., Chol H.-J., Knutsen K. P., Schaller R. D., Yang P., F, and Saykally R. J. Single gallium nitride nanowire lasers. Nature Materials, Vol. 1, 106, (2002). https://www.researchgate.net/publication/10871741.
  15. Johnson J. C., Knutsen K. P., Yan H., Law M., Zhang Y., Yang P., and Saykallym R. J. Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers. Nano Lett., Vol. 4, 197-204, (2004).
  16. Johnson J. C., Yan H., Choi H.-J., Knutsen K. P., Petersen P. B., Law M., Yang P., and Saykally R. J. Single nanowire waveguides and lasers. Proc. of SPIE, Vol. 5223, 187-196, (2003).
  17. Johnson J. C., Yan, H. Q., Yang, P. D. & Saykally, R. J. Optical cavity effects in ZnO nanowire lasers and waveguides. J. Phys. Chem. B 107, 88168828 (2003).
  18. Larrue A., Wilhelm C., Vest G., Combri S., de Rossi A., and Soci C. Monolithic integration of III-V nanowire with photonic crystal microcavity for vertical light emission. Opt. Express, Vol. 20, 7758, (2012).
  19. Lieber C. M. and Wang Z. I. Functional nanowires. MRS Bull, 32, 99-108 (2007).
  20. Lieber C. M. Nanoscal Science and technology:building a big future from small thing. MRS Bull. 28, 486-491, (2003).
  21. Lopatiuk-Tirpak O., Cernyak L., Xiu F. X., Liu J. L., Jang S., Ren F., Pearton S. J., Gartsman K, Feldman Y., Osinsky A., and Chow P. Studies of minority carrier diffusion length increase in p-type ZnO:Sb. J. Appl. Phys., Vol. 100, 086101, (2006).
  22. Ma R.-M., Oulton R. F., Sorger V. J. and Zhang X. Plassmon lasers: coherent light source at molecular scales. Laser Photonics Rev., Nol. 7, 1-21, (2013).
  23. Ma Y., Guo X., Wu X., Dai L., and Tong L. Semiconductor nanowire lasers. Advances in Optics and photonics, Vol. 5, 216-373, (2013).
  24. Ma, Yaoguang, and Limin Tong. "Optically pumped semiconductor nanowire lasers."Frontiers of Optoelectronics, Vol. 5, 239-247, (2012).
  25. Maslov A. V. and Ning C. Z. Reflection of guided modes in a semiconductor nanowire laser. Appl. Phys. Lett., Vol. 83, 1237, (2003).
  26. Okazaki K., Kubo K., Shimogaki T., Nakamura D., Higashihata M., and Okada T. Lasing characteristics of ZnO nanosheets excited by ultraviolet laser beam. Adv. Mat. Lett., Vol. 2, 354-357 (2011).
  27. Reshchikov M. A., Gu X., Nemeth B., Nause J., and Morko H. High quantum efficiency of photoluminescence in GaN and ZnO. Mater. Res. Soc. Symp. Proc. Vol. 892, pp. 0892-FF23-11.1-11.15, (2006).
  28. Sattar Z. A., and Shore K. A. Analysis of the direct modulation response of nanowire lasers. J. Lightwave Technol., Vol. 33, 3028, (2015).
  29. Snyder A. W. and Love D. Optical waveguide theory. Kiuwer, Bostonm (1983).
  30. Vugt L. K., Rhle S., and Vanmaekelbergh D. Phase-correlated nanodirectional laser emission from the end facets of a ZnO nanowire Nano Lett., Vol. 6, 2707-2711, (2006).
  31. Wang M. Q., Huang Y. Z., Chen Q., and Cai Z. P. Analysis of mode quality factors and mode reflectivities for nanowire cavity by FDTD technique. IEEE J. Quantum Electron., Vol. 42, 146-151, (2006).
  32. Yang Q., Jiang X., Guo X., Chen Y., and Tong L. Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity. Appl. Phys. Lett. 94, 101108-1, (2009).
  33. Yaoguang Ma et al. Semicnductor nanowire lasers. Advances in optics and photonics 5, 216-273 (2013).
  34. Zhang J. Y., Zhang Q. F., Deng T. S., and Wu J. L. Electrically driven ultraviolet lasing behavior from phosphours-doped p-ZnO nanonail array/n-Si heterojunction. Appl. Phys. Lett., Vol. 95, 211107, (2009).
  35. Zhang Y., Russo R. E. and Mao S. S. Quantum efficiency of ZnO nanowire lasers. Appl. Phys. Lett., 87, 043106 (2003).
  36. Zhou H., Wissinger M., Fallert J., Hauschild R., Stelzl F., Klingshirn C.,and Kalt H. Uniform-sized ZnO nanolasers arrays Appl. Phys. Lett., Vol. 91, 181112, (2007).
  37. Zimmler M. A., Capasso F., Mller S., and Ronning C. Optically pumped nanowire lasers: invited reviewSemiconductor Science and Technology., Vol. 25, 024001, (2010).
Download this PDF file

Statistics

How to Cite

[1]
R. Ahmed Abdulla, رافـد, A. Ali Ahmed, and احمد, “Design of ZnO Nanowire Laser Single Mode and Study Its Properties”, EDUSJ, vol. 28, no. 2, pp. 133–149, Jun. 2019.